His标签蛋白琼脂糖纯化树脂 Ni-NTA琼脂糖凝胶|HisSep Ni-NTA Agarose Resin
产品说明书
FAQ
COA
已发表文献
产品描述
HisSep Ni-NTA Agarose Resin以交联的6%琼脂糖凝胶为基质,通过化学方法偶联四配位的氮川三乙酸(NTA)为配体,螯合镍离子(Ni2+)后,形成非常稳定的八面体结构,镍离子处于八面体的中心,这样的结构可保护镍离子免受小分子的进攻,与Ni-IDA树脂相比,更加稳定,可以耐受一定浓度的还原剂、变性剂或耦合剂等苛刻条件。已经成为实验室纯化His标签蛋白不可或缺的树脂之一。
产品性质
基质(Matrix) |
交联的6%琼脂糖凝胶 |
粒径(Bead size) |
45-165 µm |
载量(Capacity) |
>40 mg 6×His-tagged protein/mL基质 |
耐压(Tolerance Pressuremax) |
0.1 MPa, 1 bar |
储存缓冲液(Buffer) |
含20%乙醇的1×PBS |
运输和保存方法
冰袋运输。4℃保存,有效期2年。
注意事项
1.为了您的安全和健康,请穿实验服并戴一次性手套操作。
2.本产品仅作科研用途!
使用方法
(一)纯化流程
1 缓冲液的准备
缓冲液使用原理:低咪唑上样,高咪唑洗脱,或者高pH上样,低pH洗脱。Buffer 在使用前最好用0.22 µm或0.45 µm滤膜过滤除菌。
附表1 可溶性His标签蛋白纯化所需缓冲液及配方
缓冲液名称 |
配方 |
配制1L溶液所需各种试剂量 |
Lysis Buffer (pH8.0) |
50 mM NaH2PO4 300 mM NaCl 10 mM imidazole NaOH调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
NaH2PO4 ·2H2O 7.8 g NaCl 17.54 g Imidazole 0.68 g |
Wash Buffer (pH8.0) |
50 mM NaH2PO4 300 mM NaCl 20 mM imidazole NaOH调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
NaH2PO4 ·2H2O 7.8 g NaCl 17.54 g Imidazole 1.36 g |
Elution Buffer(pH8.0) |
50 mM NaH2PO4 300 mM NaCl 250 mM imidazole NaOH调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
NaH2PO4 ·2H2O 7.8 g NaCl 17.54 g Imidazole 17.0 g |
包涵体组氨酸标签蛋白纯化所需缓冲液及配方详见附表2。
附表2 包涵体His标签蛋白纯化所需缓冲液及配方
缓冲液名称 |
配方 |
配制1L溶液所需各种试剂量 |
Lysis Buffer (pH8.0) |
8 M Urea 100 mM NaH2PO4 100 mM Tris·HCl 盐酸溶液调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
Urea 480.5 g NaH2PO4 ·2H2O 15.6 g Tris·HCl 15.76 g |
Wash Buffer (pH6.3) |
8 M Urea 100 mM NaH2PO4 100 mM Tris·HCl 盐酸溶液调pH至6.3, 0.22 µm或0.45 µm过滤除菌 |
Urea 480.5 g NaH2PO4 ·2H2O 15.6 g Tris·HCl 15.76 g |
Elution Buffer(pH4.5) |
8 M Urea 100 mM NaH2PO4 100 mM Tris·HCl 盐酸溶液调pH至4.5, 0.22 µm或0.45 µm过滤除菌 |
Urea 480.5 g NaH2PO4 ·2H2O 15.6 g Tris·HCl 15.76 g |
2 样品准备
2.1 细菌表达的蛋白(本说明以细菌表达的蛋白纯化为例)
1)挑取单菌落到含有适合抗性的LB培养基中,根据载体说明加入相应的诱导剂诱导相应的时间。
2)表达结束后,将培养液转至离心瓶,7000 rpm,离心15 min,收集菌体,然后加入1/10体积的裂解液(Lysis buffer)和PMSF(PMSF在破碎前加入,其终浓度为1 mM),同时也可加入其他蛋白酶抑制剂,但不能影响目的蛋白与树脂的结合。
3)之后加入溶菌酶,使其工作浓度为1 mg/mL。【注】如果表达的宿主细胞内含pLysS或pLysE,可以不加入溶菌酶。
4)将菌体沉淀悬浮起来(如果菌液浓度高,可考虑加入10 µg/mL RNase A和5 µg/mL DNase I),混匀,置于冰上超声破碎细胞,至菌液基本保持澄清。
5)收集上述澄清蛋白液,10000 rpm,4℃离心20-30 min。取上清0.22 µm或0.45 µm滤膜过滤后置于冰上备用或-20℃保存。
2.2 酵母、昆虫和哺乳细胞分泌表达的可溶性蛋白
将细胞培养液转移至离心瓶,5000 rpm离心10 min,收集上清。如上清中不含EDTA、组氨酸和还原剂等,即可直接上柱纯化;如含有EDTA、组氨酸和还原剂等物质,则需用1×PBS 4℃下透析后方可上柱。【注】对于大量体积的上清,需加入硫酸铵进行沉淀浓缩,之后经1×PBS 4℃下透析后上柱。
2.3 包涵体蛋白纯化(以细菌为例)
1)将培养液转移至离心瓶,7000 rpm,离心15 min,收集菌体去上清。
2)按照菌体:裂解液=1:10(w/v)的比例将菌体充分悬浮,混匀,冰浴超声破碎。
3)将破碎液转移至离心管,10000 rpm,4℃离心20-30 min,去上清。可重复步骤2)和3)一次。
4)按照菌体:裂解液(含8 M尿素)=1:10(w/v)的比例将包涵体充分悬浮。
5)变性条件下纯化His标签蛋白纯化。
3样品纯化
1)装柱:将HisSep Ni-NTA Agarose Resin借助重力的作用装入合适的纯化柱中。
2)清洗:3-5倍柱体积去离子水冲洗色谱柱。
3)平衡:至少5倍柱体积的Lysis Buffer 平衡色谱柱。
4)上样:注意控制加样速度,确保目的蛋白与Ni2+充分接触,以提高纯化得率。【注】注意收集流出液,用于后续SDS-PAGE检测蛋白的结合情况。
5)平衡/洗杂:Wash Buffer 平衡柱子,直到紫外吸收达到一个稳定的基线(一般至少10-15个柱体积)。注意收集流出液。【注】在样品和结合缓冲液中加入低浓度咪唑可以提高样品纯度。
6)洗脱:使用5-10倍柱体积Elution Buffer洗脱,收集洗脱液即目的蛋白溶液。
7)清洗:依次用3倍柱体积的Lysis Buffer和5倍柱体积的去离子水清洗树脂。【注】建议在清洗之前用更高浓度咪唑(如500 mM)彻底清洗纯化柱上结合的杂蛋白。
8)保存:5倍柱体积的20%乙醇平衡树脂,最后将树脂保存在20%乙醇的1×PBS中,置于4℃保存。
4 SDS-PAGE检测
将纯化过程中得到的样品(包括原始样品、流出组分、洗杂及洗脱组分等)利用SDS-PAGE进行检测,判定其纯化效果。
(二)在位清洗
当填料使用过程中发现反压过高(>0.5 Mpa)或者填料上面出现明显的污染时,需对其进行在位清洗(Cleaning-in-Place,CIP)。在位清洗时,先把Ni2+脱掉,清洗结束后,将填料保存在20%乙醇中,后者重新挂Ni后再保存在20%乙醇中。建议按照下面操作去除填料上残留的污染物,如沉淀蛋白、疏水蛋白和脂蛋白等。
1 去除强疏水结合的蛋白,脂蛋白和脂类
使用30%异丙醇清洗5-10个柱体积,接触时间为15-20 min可以去除此类污染物。之后再用去离子水清洗10倍柱体积。也可以选择使用含有去污剂的酸性或者碱性溶液清洗填料2倍柱体积。例如含有0.1-0.5%非离子去污剂的0.1 M醋酸溶液,接触时间为1-2 h。去污剂处理后,需用70%的乙醇清洗5倍柱体积,彻底去除去污剂。最后利用去离子水清洗10倍柱体积。
2 去除离子作用结合的蛋白
使用1.5 M NaCl 溶液接触10-15 min,之后用去离子水清洗10倍柱体积。
(三)填料再生
当填料使用过程中发现反压过高,填料上面出现明显的污染,或填料载量明显变低时,需要对其进行镍离子剥离及重新挂镍处理,即填料再生。按照下面操作流程进行:
1)使用5倍柱体积去离子水清洗填料;
2)使用5倍柱体积100 mM EDTA(pH 8.0)剥落镍离子;
3)使用10倍柱体积去离子水清洗填料;
4)使用0.5 M NaOH清洗5倍柱体积,停留10-15 min;
5)使用10倍柱体积去离子水清洗填料;
6)使用3-5倍柱体积100 mM NiSO4再生挂镍;
7)去离子水清洗10倍柱体积。
填料再生后,可立即使用,也可保存在20%乙醇中,置于4℃备用。
附表3 HisSep Ni-NTA Agarose Resin试剂耐受情况
试剂种类 |
浓度 |
还原剂 |
5 mM DTE 0.5-1 mM DTT 20 mM β-mercaptoethanol 5 mM TCEP 10 mM reduced glutathione |
变性剂 |
8 M urea 6 M Gua-HCl |
去污剂 |
2% TritonTM X-100(nonionic) 2% TweenTM20(nonionic) 2% NP-40(nonionic) 2% Cholate (anionic) 1% CHAPS (zwitterionic) |
其他类 |
500 mM imidazole 20% ethanol 50% glycerol 100 mM Na2SO4 1.5 M NaCl 1 mM EDTA 60 mM citrate |
缓冲液 |
50 mM sodium phosphate, pH7.4 100 mM Tris-HCl, pH7.4 100 mM Tris-acetate, pH7.4 100 mM HEPJP, pH7.4 100 mM MOPS, pH7.4 100 mM sodium acetate, pH7.4 |
附表4 问题及解决方案
问题 |
可能原因 |
推荐解决方案 |
柱子反压过高 |
填料被堵塞 |
裂解液中可能含微小的固体颗粒,建议上柱前使用滤膜(0.22 µm或0.45 µm)过滤,或离心去除。 |
样品中含高浓度的核酸,延长破碎时间直至粘度降低,或添加DNaseI (终浓度为5 µg/mL),Mg2+(终浓度1 mM),冰上孵育10-15 min |
||
样品太黏稠 |
有机试剂或蛋白稳定试剂(如甘油等)可能会引起反压增高,降低操作流速。 |
|
洗脱组分中无目的蛋白 |
蛋白可能是包涵体 |
可通过电泳检测裂解液,分析上清中是否有目的蛋白,包涵体蛋白需按照包涵体蛋白的纯化方式 |
表达量太低 |
优化表达条件,使用包涵体纯化缓冲体系 |
|
目的蛋白结合比较弱,在洗杂步骤中已被洗下来 |
提高Wash Buffer的pH值,或者降低咪唑浓度 |
|
目的蛋白结合过强,不容易洗脱下来 |
降低Elution Buffer 的pH,或者增加Elution Buffer中的咪唑浓度 |
|
使用10-100 mM EDTA溶液剥离镍离子,同时得到蛋白 |
||
蛋白降解 |
菌体破碎时需添加一些蛋白酶抑制剂 |
|
在4℃下进行纯化操作 |
||
洗脱组分不纯(含多种蛋白) |
洗杂不彻底 |
增加Wash Buffer 体积 |
样品中含有其他His标签蛋白 |
通过调节pH值或咪唑浓度来优化洗杂条件。再使用其他纯化手段(如去离子交换,疏水等)进一步纯化洗脱组分。 |
|
填料颜色变浅或变成白色 |
镍离子脱落或者剥离 |
按照填料再生的操作重新挂镍离子 |
填料呈现褐色 |
缓冲液中含有DTT等还原剂 |
参考附3适当降低还原剂DTT的浓度,或改用巯基乙醇 |
上样过程中蛋白发生沉淀 |
操作温度太低 |
室温下进行上样 |
|
蛋白发生聚集 |
在样品和所有缓冲液中添加稳定剂,如0.1%Triton X-100或Tween-20 |
相关产品
20503JP10 |
HisSep Ni-NTA Agarose Resin 6FF (His标签蛋白琼脂糖高速纯化树脂) |
10 mL |
20503JP50 |
50 mL |
|
20503JP60 |
100 mL |
|
20504JP08 |
HisSep Ni-NTA 6FF Chromatography Column, 5ML(His标签蛋白纯化预装柱,5ML) |
5 mL |
20504JP25 |
5×5 mL |
|
20505JP03 |
HisSep Ni-NTA 6FF Chromatography Column, 1ML(His标签蛋白纯化预装柱,1ML) |
1 mL |
20505JP08 |
5×1 mL |
|
20589JP03 |
Anti-His Affinity Gel(Anti-His标签亲和纯化凝胶) |
1 mL |
20589JP08 | 5mL | |
20589JP25 | 25 mL | |
20589JP60 | 100 mL |
HB20220718
产品描述
HisSep Ni-NTA Agarose Resin以交联的6%琼脂糖凝胶为基质,通过化学方法偶联四配位的氮川三乙酸(NTA)为配体,螯合镍离子(Ni2+)后,形成非常稳定的八面体结构,镍离子处于八面体的中心,这样的结构可保护镍离子免受小分子的进攻,与Ni-IDA树脂相比,更加稳定,可以耐受一定浓度的还原剂、变性剂或耦合剂等苛刻条件。已经成为实验室纯化His标签蛋白不可或缺的树脂之一。
产品性质
基质(Matrix) |
交联的6%琼脂糖凝胶 |
粒径(Bead size) |
45-165 µm |
载量(Capacity) |
>40 mg 6×His-tagged protein/mL基质 |
耐压(Tolerance Pressuremax) |
0.1 MPa, 1 bar |
储存缓冲液(Buffer) |
含20%乙醇的1×PBS |
运输和保存方法
冰袋运输。4℃保存,有效期2年。
注意事项
1.为了您的安全和健康,请穿实验服并戴一次性手套操作。
2.本产品仅作科研用途!
使用方法
(一)纯化流程
1 缓冲液的准备
缓冲液使用原理:低咪唑上样,高咪唑洗脱,或者高pH上样,低pH洗脱。Buffer 在使用前最好用0.22 µm或0.45 µm滤膜过滤除菌。
附表1 可溶性His标签蛋白纯化所需缓冲液及配方
缓冲液名称 |
配方 |
配制1L溶液所需各种试剂量 |
Lysis Buffer (pH8.0) |
50 mM NaH2PO4 300 mM NaCl 10 mM imidazole NaOH调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
NaH2PO4 ·2H2O 7.8 g NaCl 17.54 g Imidazole 0.68 g |
Wash Buffer (pH8.0) |
50 mM NaH2PO4 300 mM NaCl 20 mM imidazole NaOH调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
NaH2PO4 ·2H2O 7.8 g NaCl 17.54 g Imidazole 1.36 g |
Elution Buffer(pH8.0) |
50 mM NaH2PO4 300 mM NaCl 250 mM imidazole NaOH调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
NaH2PO4 ·2H2O 7.8 g NaCl 17.54 g Imidazole 17.0 g |
包涵体组氨酸标签蛋白纯化所需缓冲液及配方详见附表2。
附表2 包涵体His标签蛋白纯化所需缓冲液及配方
缓冲液名称 |
配方 |
配制1L溶液所需各种试剂量 |
Lysis Buffer (pH8.0) |
8 M Urea 100 mM NaH2PO4 100 mM Tris·HCl 盐酸溶液调pH至8.0, 0.22 µm或0.45 µm过滤除菌 |
Urea 480.5 g NaH2PO4 ·2H2O 15.6 g Tris·HCl 15.76 g |
Wash Buffer (pH6.3) |
8 M Urea 100 mM NaH2PO4 100 mM Tris·HCl 盐酸溶液调pH至6.3, 0.22 µm或0.45 µm过滤除菌 |
Urea 480.5 g NaH2PO4 ·2H2O 15.6 g Tris·HCl 15.76 g |
Elution Buffer(pH4.5) |
8 M Urea 100 mM NaH2PO4 100 mM Tris·HCl 盐酸溶液调pH至4.5, 0.22 µm或0.45 µm过滤除菌 |
Urea 480.5 g NaH2PO4 ·2H2O 15.6 g Tris·HCl 15.76 g |
2 样品准备
2.1 细菌表达的蛋白(本说明以细菌表达的蛋白纯化为例)
1)挑取单菌落到含有适合抗性的LB培养基中,根据载体说明加入相应的诱导剂诱导相应的时间。
2)表达结束后,将培养液转至离心瓶,7000 rpm,离心15 min,收集菌体,然后加入1/10体积的裂解液(Lysis buffer)和PMSF(PMSF在破碎前加入,其终浓度为1 mM),同时也可加入其他蛋白酶抑制剂,但不能影响目的蛋白与树脂的结合。
3)之后加入溶菌酶,使其工作浓度为1 mg/mL。【注】如果表达的宿主细胞内含pLysS或pLysE,可以不加入溶菌酶。
4)将菌体沉淀悬浮起来(如果菌液浓度高,可考虑加入10 µg/mL RNase A和5 µg/mL DNase I),混匀,置于冰上超声破碎细胞,至菌液基本保持澄清。
5)收集上述澄清蛋白液,10000 rpm,4℃离心20-30 min。取上清0.22 µm或0.45 µm滤膜过滤后置于冰上备用或-20℃保存。
2.2 酵母、昆虫和哺乳细胞分泌表达的可溶性蛋白
将细胞培养液转移至离心瓶,5000 rpm离心10 min,收集上清。如上清中不含EDTA、组氨酸和还原剂等,即可直接上柱纯化;如含有EDTA、组氨酸和还原剂等物质,则需用1×PBS 4℃下透析后方可上柱。【注】对于大量体积的上清,需加入硫酸铵进行沉淀浓缩,之后经1×PBS 4℃下透析后上柱。
2.3 包涵体蛋白纯化(以细菌为例)
1)将培养液转移至离心瓶,7000 rpm,离心15 min,收集菌体去上清。
2)按照菌体:裂解液=1:10(w/v)的比例将菌体充分悬浮,混匀,冰浴超声破碎。
3)将破碎液转移至离心管,10000 rpm,4℃离心20-30 min,去上清。可重复步骤2)和3)一次。
4)按照菌体:裂解液(含8 M尿素)=1:10(w/v)的比例将包涵体充分悬浮。
5)变性条件下纯化His标签蛋白纯化。
3样品纯化
1)装柱:将HisSep Ni-NTA Agarose Resin借助重力的作用装入合适的纯化柱中。
2)清洗:3-5倍柱体积去离子水冲洗色谱柱。
3)平衡:至少5倍柱体积的Lysis Buffer 平衡色谱柱。
4)上样:注意控制加样速度,确保目的蛋白与Ni2+充分接触,以提高纯化得率。【注】注意收集流出液,用于后续SDS-PAGE检测蛋白的结合情况。
5)平衡/洗杂:Wash Buffer 平衡柱子,直到紫外吸收达到一个稳定的基线(一般至少10-15个柱体积)。注意收集流出液。【注】在样品和结合缓冲液中加入低浓度咪唑可以提高样品纯度。
6)洗脱:使用5-10倍柱体积Elution Buffer洗脱,收集洗脱液即目的蛋白溶液。
7)清洗:依次用3倍柱体积的Lysis Buffer和5倍柱体积的去离子水清洗树脂。【注】建议在清洗之前用更高浓度咪唑(如500 mM)彻底清洗纯化柱上结合的杂蛋白。
8)保存:5倍柱体积的20%乙醇平衡树脂,最后将树脂保存在20%乙醇的1×PBS中,置于4℃保存。
4 SDS-PAGE检测
将纯化过程中得到的样品(包括原始样品、流出组分、洗杂及洗脱组分等)利用SDS-PAGE进行检测,判定其纯化效果。
(二)在位清洗
当填料使用过程中发现反压过高(>0.5 Mpa)或者填料上面出现明显的污染时,需对其进行在位清洗(Cleaning-in-Place,CIP)。在位清洗时,先把Ni2+脱掉,清洗结束后,将填料保存在20%乙醇中,后者重新挂Ni后再保存在20%乙醇中。建议按照下面操作去除填料上残留的污染物,如沉淀蛋白、疏水蛋白和脂蛋白等。
1 去除强疏水结合的蛋白,脂蛋白和脂类
使用30%异丙醇清洗5-10个柱体积,接触时间为15-20 min可以去除此类污染物。之后再用去离子水清洗10倍柱体积。也可以选择使用含有去污剂的酸性或者碱性溶液清洗填料2倍柱体积。例如含有0.1-0.5%非离子去污剂的0.1 M醋酸溶液,接触时间为1-2 h。去污剂处理后,需用70%的乙醇清洗5倍柱体积,彻底去除去污剂。最后利用去离子水清洗10倍柱体积。
2 去除离子作用结合的蛋白
使用1.5 M NaCl 溶液接触10-15 min,之后用去离子水清洗10倍柱体积。
(三)填料再生
当填料使用过程中发现反压过高,填料上面出现明显的污染,或填料载量明显变低时,需要对其进行镍离子剥离及重新挂镍处理,即填料再生。按照下面操作流程进行:
1)使用5倍柱体积去离子水清洗填料;
2)使用5倍柱体积100 mM EDTA(pH 8.0)剥落镍离子;
3)使用10倍柱体积去离子水清洗填料;
4)使用0.5 M NaOH清洗5倍柱体积,停留10-15 min;
5)使用10倍柱体积去离子水清洗填料;
6)使用3-5倍柱体积100 mM NiSO4再生挂镍;
7)去离子水清洗10倍柱体积。
填料再生后,可立即使用,也可保存在20%乙醇中,置于4℃备用。
附表3 HisSep Ni-NTA Agarose Resin试剂耐受情况
试剂种类 |
浓度 |
还原剂 |
5 mM DTE 0.5-1 mM DTT 20 mM β-mercaptoethanol 5 mM TCEP 10 mM reduced glutathione |
变性剂 |
8 M urea 6 M Gua-HCl |
去污剂 |
2% TritonTM X-100(nonionic) 2% TweenTM20(nonionic) 2% NP-40(nonionic) 2% Cholate (anionic) 1% CHAPS (zwitterionic) |
其他类 |
500 mM imidazole 20% ethanol 50% glycerol 100 mM Na2SO4 1.5 M NaCl 1 mM EDTA 60 mM citrate |
缓冲液 |
50 mM sodium phosphate, pH7.4 100 mM Tris-HCl, pH7.4 100 mM Tris-acetate, pH7.4 100 mM HEPJP, pH7.4 100 mM MOPS, pH7.4 100 mM sodium acetate, pH7.4 |
附表4 问题及解决方案
问题 |
可能原因 |
推荐解决方案 |
柱子反压过高 |
填料被堵塞 |
裂解液中可能含微小的固体颗粒,建议上柱前使用滤膜(0.22 µm或0.45 µm)过滤,或离心去除。 |
样品中含高浓度的核酸,延长破碎时间直至粘度降低,或添加DNaseI (终浓度为5 µg/mL),Mg2+(终浓度1 mM),冰上孵育10-15 min |
||
样品太黏稠 |
有机试剂或蛋白稳定试剂(如甘油等)可能会引起反压增高,降低操作流速。 |
|
洗脱组分中无目的蛋白 |
蛋白可能是包涵体 |
可通过电泳检测裂解液,分析上清中是否有目的蛋白,包涵体蛋白需按照包涵体蛋白的纯化方式 |
表达量太低 |
优化表达条件,使用包涵体纯化缓冲体系 |
|
目的蛋白结合比较弱,在洗杂步骤中已被洗下来 |
提高Wash Buffer的pH值,或者降低咪唑浓度 |
|
目的蛋白结合过强,不容易洗脱下来 |
降低Elution Buffer 的pH,或者增加Elution Buffer中的咪唑浓度 |
|
使用10-100 mM EDTA溶液剥离镍离子,同时得到蛋白 |
||
蛋白降解 |
菌体破碎时需添加一些蛋白酶抑制剂 |
|
在4℃下进行纯化操作 |
||
洗脱组分不纯(含多种蛋白) |
洗杂不彻底 |
增加Wash Buffer 体积 |
样品中含有其他His标签蛋白 |
通过调节pH值或咪唑浓度来优化洗杂条件。再使用其他纯化手段(如去离子交换,疏水等)进一步纯化洗脱组分。 |
|
填料颜色变浅或变成白色 |
镍离子脱落或者剥离 |
按照填料再生的操作重新挂镍离子 |
填料呈现褐色 |
缓冲液中含有DTT等还原剂 |
参考附3适当降低还原剂DTT的浓度,或改用巯基乙醇 |
上样过程中蛋白发生沉淀 |
操作温度太低 |
室温下进行上样 |
|
蛋白发生聚集 |
在样品和所有缓冲液中添加稳定剂,如0.1%Triton X-100或Tween-20 |
相关产品
20503JP10 |
HisSep Ni-NTA Agarose Resin 6FF (His标签蛋白琼脂糖高速纯化树脂) |
10 mL |
20503JP50 |
50 mL |
|
20503JP60 |
100 mL |
|
20504JP08 |
HisSep Ni-NTA 6FF Chromatography Column, 5ML(His标签蛋白纯化预装柱,5ML) |
5 mL |
20504JP25 |
5×5 mL |
|
20505JP03 |
HisSep Ni-NTA 6FF Chromatography Column, 1ML(His标签蛋白纯化预装柱,1ML) |
1 mL |
20505JP08 |
5×1 mL |
|
20589JP03 |
Anti-His Affinity Gel(Anti-His标签亲和纯化凝胶) |
1 mL |
20589JP08 | 5mL | |
20589JP25 | 25 mL | |
20589JP60 | 100 mL |
HB20220718
Q:柱子反压过高是什么原因?
A:填料可能被堵塞:裂解液中可能含微小的固体颗粒,建议上柱前使用滤膜(0.22µm 或 0.45µm)过滤,或离心去除。
Q:为什么洗脱组分中无目的蛋白?
A:蛋白可能是包涵体:可通过电泳检测裂解液,分析上清中是否有目的蛋白,包涵体蛋白需按照包涵体蛋白的纯化方式;
Q:洗脱组分不纯(含多种蛋白)是什么原因?
A: 样品中含有其他 His 标签蛋白:通过调节 pH 值或咪唑浓度来优化洗杂条件。再使用其他纯化手段(如去离子交换,疏水等)进一步纯化洗脱组分。
Q:为什么填料颜色会变浅或变成白色?
A:镍离子脱落或者剥离,按照填料再生的操作重新挂镍离子。
Q:产品规格的体积指的是什么?
A:指的是填料的体积,不包括保护液的。
Q:填料流速慢的原因?
A:1.柱子在清洗平衡步骤流速减慢,柱子下筛板堵塞或者是试剂中有杂质堵塞。2.上样过程中流速逐渐降低,样品中有不溶物 堵塞填料或者是样品粘稠。少数情况蛋白挂柱后 流速也会减慢。 3.洗杂洗脱步骤流速减慢,蛋白不稳定 在柱子上沉淀,可以选择低温条件纯化,或者是在整个纯化过程中样品试剂中加入甘油保护蛋白。
[1] Xia B, Shen X, He Y, et al. SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Res. 2021;31(8):847-860. doi:10.1038/s41422-021-00519-4(IF:25.617)
[2] Zhao S, Chen Y, Chen F, et al. Sas10 controls ribosome biogenesis by stabilizing Mpp10 and delivering the Mpp10-Imp3-Imp4 complex to nucleolus. Nucleic Acids Res. 2019;47(6):2996-3012. doi:10.1093/nar/gkz105(IF:11.147)
[3] Li S, Yang X, Huang H, et al. Arabidopsis ACYL-ACTIVATING ENZYME 9 (AAE9) encoding an isobutyl-CoA synthetase is a key factor connecting branched-chain amino acid catabolism with iso-branched wax biosynthesis. New Phytol. 2022;233(6):2458-2470. doi:10.1111/nph.17941(IF:10.152)
[4] Xie L, Yan T, Li L, et al. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. New Phytol. 2021;231(5):2050-2064. doi:10.1111/nph.17514(IF:10.152)
[5] Feng Y, Chen JJ, Xie NB, et al. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chem Sci. 2021;12(34):11322-11329. Published 2021 Jul 21. doi:10.1039/d1sc02161c(IF:9.825)
[6] Li X, Sun D, Feng H, et al. Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. J Hazard Mater. 2020;399:122895. doi:10.1016/j.jhazmat.2020.122895(IF:9.038)
[7] Liu ZH, Xu HL, Han GW, et al. Self-Assembling Nanovaccine Enhances Protective Efficacy Against CSFV in Pigs. Front Immunol. 2021;12:689187. Published 2021 Jul 21. doi:10.3389/fimmu.2021.689187(IF:7.561)
[8] Xie L, Yan T, Li L, et al. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. J Exp Bot. 2021;72(5):1691-1701. doi:10.1093/jxb/eraa523(IF:6.992)
[9] Shu C, Wang L, Zou C, et al. Function of Foxl2 and Dmrt1 proteins during gonadal differentiation in the olive flounder Paralichthys olivaceus [published online ahead of print, 2022 Jun 16]. Int J Biol Macromol. 2022;215:141-154. doi:10.1016/j.ijbiomac.2022.06.098(IF:6.953)
[10] Chen T, Li Y, Xie L, et al. AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to Pseudomonas syringae in Artemisia annua. Hortic Res. 2021;8(1):217. Published 2021 Oct 1. doi:10.1038/s41438-021-00652-6(IF:6.793)
[11] Lu Y, Liu ZH, Li YX, Xu HL, Fang WH, He F. Targeted Delivery of Nanovaccine to Dendritic Cells via DC-Binding Peptides Induces Potent Antiviral Immunity in vivo. Int J Nanomedicine. 2022;17:1593-1608. Published 2022 Apr 5. doi:10.2147/IJN.S357462(IF:6.400)
[12] Wu Z, Li L, Liu H, et al. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant Sci. 2021;308:110920. doi:10.1016/j.plantsci.2021.110920(IF:4.729)
[13] Zhang Y, Hu J, Yu M, et al. A novel BRET based genetic coded biosensor for apoptosis detection at deep tissue level in live animal. Apoptosis. 2021;26(11-12):628-638. doi:10.1007/s10495-021-01693-x(IF:4.677)
[14] Yuan S, Hu D, Wang Y, et al. BcWRKY1 confers salt sensitivity via inhibiting Reactive oxygen species scavenging [published online ahead of print, 2022 May 12]. Plant Mol Biol. 2022;10.1007/s11103-022-01272-x. doi:10.1007/s11103-022-01272-x(IF:4.076)
[15] Liu C, Zou G, Yan X, Zhou X. Screening of multimeric β-xylosidases from the gut microbiome of a higher termite, Globitermes brachycerastes. Int J Biol Sci. 2018;14(6):608-615. Published 2018 Apr 26. doi:10.7150/ijbs.22763(IF:4.057)