[1] Zhang H, Ge S, Ni B, et al. Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy. 2021;17(12):4218-4230. doi:10.1080/15548627.2021.1909833(IF:16.016)
[2] Kai H, Wu Q, Yin R, et al. LncRNA NORAD Promotes Vascular Endothelial Cell Injury and Atherosclerosis Through Suppressing VEGF Gene Transcription via Enhancing H3K9 Deacetylation by Recruiting HDAC6. Front Cell Dev Biol. 2021;9:701628. Published 2021 Jul 9. doi:10.3389/fcell.2021.701628(IF:6.684)
[3] Tao J, Qiu J, Lu L, et al. ZBTB20 Positively Regulates Oxidative Stress, Mitochondrial Fission, and Inflammatory Responses of ox-LDL-Induced Macrophages in Atherosclerosis. Oxid Med Cell Longev. 2021;2021:5590855. Published 2021 Mar 9. doi:10.1155/2021/5590855(IF:6.543)
[4] Wang Y, Xu Z, Wang X, et al. Extracellular-vesicle containing miRNA-503-5p released by macrophages contributes to atherosclerosis. Aging (Albany NY). 2021;13(8):12239-12257. doi:10.18632/aging.103855(IF:5.682)
[5] Zhang Y, Xu X, Ma J, et al. Loss of CD226 protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Biochim Biophys Acta Mol Basis Dis. 2022;1868(9):166452. doi:10.1016/j.bbadis.2022.166452(IF:5.187)
[6] Keping Y, Yunfeng S, Pengzhuo X, Liang L, Chenhong X, Jinghua M. Sestrin1 inhibits oxidized low-density lipoprotein-induced activation of NLRP3 inflammasome in macrophages in a murine atherosclerosis model. Eur J Immunol. 2020;50(8):1154-1166. doi:10.1002/eji.201948427(IF:4.404)
[7] Wang Y, Jia Q, Zhang Y, Wei J, Liu P. Amygdalin Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and Bone Marrow-Derived Macrophages. Front Pharmacol. 2020;11:590929. Published 2020 Oct 29. doi:10.3389/fphar.2020.590929(IF:4.225)
[8] Zhi H, Wu JP, Lu LM, et al. Decabromodiphenyl ether (BDE-209) enhances foam cell formation in human macrophages via augmenting Toll-like receptor 4-dependent lipid uptake. Food Chem Toxicol. 2018;121:367-373. doi:10.1016/j.fct.2018.09.024(IF:3.977)
[9] Zhi H, Yuan N, Wu JP, et al. MicroRNA-21 attenuates BDE-209-induced lipid accumulation in THP-1 macrophages by downregulating Toll-like receptor 4 expression. Food Chem Toxicol. 2019;125:71-77. doi:10.1016/j.fct.2018.12.044(IF:3.977)
[10] Wu T, Xu W, Wang Y, et al. OxLDL enhances choroidal neovascularization lesion through inducing vascular endothelium to mesenchymal transition process and angiogenic factor expression. Cell Signal. 2020;70:109571. doi:10.1016/j.cellsig.2020.109571(IF:3.968)
[11] Long J, Chen J, Wang Q, et al. NFAT activating protein with ITAM motif 1 (NFAM1) is upregulated on circulating monocytes in coronary artery disease and potentially correlated with monocyte chemotaxis. Atherosclerosis. 2020;307:39-51. doi:10.1016/j.atherosclerosis.2020.06.001(IF:3.919)
[12] Sun L, Gai J, Shi S, et al. Protease-Activated Receptor 2 (PAR-2) Antagonist AZ3451 Mitigates Oxidized Low-Density Lipoprotein (Ox-LDL)-Induced Damage and Endothelial Inflammation. Chem Res Toxicol. 2021;34(10):2202-2208. doi:10.1021/acs.chemrestox.1c00154(IF:3.739)
[13] Huang Z, Li P, Wu L, et al. Hsa_circ_0029589 knockdown inhibits the proliferation, migration and invasion of vascular smooth muscle cells via regulating miR-214-3p and STIM1. Life Sci. 2020;259:118251. doi:10.1016/j.lfs.2020.118251(IF:3.647)
[14] Wang P, Yin B, Zhang Z, et al. Foamy macrophages potentially inhibit tuberculous wound healing by inhibiting the TLRs/NF-κB signalling pathway. Wound Repair Regen. 2022;30(3):376-396. doi:10.1111/wrr.13006(IF:3.617)
[15] Zhou YH, Tang YZ, Guo LY, et al. Overexpression of sFlt-1 represses ox-LDL-induced injury of HUVECs by activating autophagy via PI3K/AKT/mTOR pathway. Microvasc Res. 2022;139:104252. doi:10.1016/j.mvr.2021.104252(IF:3.514)
[16] Liu Y, Sun Y, Bai X, Li L, Zhu G. Albiflorin Alleviates Ox-LDL-Induced Human Umbilical Vein Endothelial Cell Injury through IRAK1/TAK1 Pathway. Biomed Res Int. 2022;2022:6584645. Published 2022 May 13. doi:10.1155/2022/6584645(IF:3.411)
[17] Zang YH, Chen D, Zhou B, et al. FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFκB-mediated NLRP3 upregulation. Vascul Pharmacol. 2019;121:106579. doi:10.1016/j.vph.2019.106579(IF:3.330)
[18] Fang M, Li Y, Wu Y, Ning Z, Wang X, Li X. miR-185 silencing promotes the progression of atherosclerosis via targeting stromal interaction molecule 1. Cell Cycle. 2019;18(6-7):682-695. doi:10.1080/15384101.2019.1580493(IF:3.259)
[19] Han R, Luo J, Wang L, Li L, Zheng H. miR-33a-5p Suppresses ox-LDL-Stimulated Calcification of Vascular Smooth Muscle Cells by Targeting METTL3. Cardiovasc Toxicol. 2021;21(9):737-746. doi:10.1007/s12012-021-09663-0(IF:3.239)
[20] Zhang Y, Feng X, Du M, Ding J, Liu P. Salvianolic acid B attenuates the inflammatory response in atherosclerosis by regulating MAPKs/ NF-κB signaling pathways in LDLR-/- mice and RAW264.7 cells. Int J Immunopathol Pharmacol. 2022;36:3946320221079468. doi:10.1177/03946320221079468(IF:3.219)
[21] Xiong X, Yan Z, Jiang W, Jiang X. ETS variant transcription factor 6 enhances oxidized low-density lipoprotein-induced inflammatory response in atherosclerotic macrophages via activating NF-κB signaling. Int J Immunopathol Pharmacol. 2022;36:20587384221076472. doi:10.1177/20587384221076472(IF:3.219)
[22] Li X, Cao Q, Wang Y, Wang Y. Retracted Article: LncRNA OIP5-AS1 contributes to ox-LDL-induced inflammation and oxidative stress through regulating the miR-128-3p/CDKN2A axis in macrophages [retracted in: RSC Adv. 2021 Jan 28;11(9):5241]. RSC Adv. 2019;9(71):41709-41719. Published 2019 Dec 17. doi:10.1039/c9ra08322g(IF:3.049)
[23] Gao F, Zhao Y, Zhang B, et al. SJPN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling. Mol Med Rep. 2022;25(5):161. doi:10.3892/mmr.2022.12678(IF:2.952)
[24] Pan Z, Zhang Y, Li C, et al. MiR-296-5p ameliorates deep venous thrombosis by inactivating S100A4. Exp Biol Med (Maywood). 2021;246(21):2259-2268. doi:10.1177/15353702211023034(IF:2.691)
[25] Meng Q, Liu H, Wu H, et al. A Network Pharmacology Study to Explore the Underlying Mechanism of Safflower (Carthamus tinctorius L.) in the Treatment of Coronary Heart Disease. Evid Based Complement Alternat Med. 2022;2022:3242015. Published 2022 May 14. doi:10.1155/2022/3242015(IF:2.630)
[26] Wu YT, Li JB, Lin HQ, et al. Inhibition of miR-200b-3p alleviates lipid accumulation and promotes cholesterol efflux by targeting ABCA1 in macrophage-derived foam cells. Exp Ther Med. 2021;22(2):831. doi:10.3892/etm.2021.10263(IF:2.447)
[27] Li W, Li Y, Zhi W, et al. Diagnostic value of using exosome-derived cysteine-rich protein 61 as biomarkers for acute coronary syndrome. Exp Ther Med. 2021;22(6):1437. doi:10.3892/etm.2021.10872(IF:2.447)
[28] Wang L, Li C, Feng C, Zang Y. YY1 affects the levels and function of fibulin-5 in ox-LDL-treated vascular smooth muscle cells. Exp Ther Med. 2022;23(6):407. doi:10.3892/etm.2022.11334(IF:2.447)
[29] Wei J, Huang L, Li D, et al. Total Flavonoids of Engelhardia roxburghiana Wall. Leaves Alleviated Foam Cells Formation through AKT/mTOR-Mediated Autophagy in the Progression of Atherosclerosis. Chem Biodivers. 2021;18(9):e2100308. doi:10.1002/cbdv.202100308(IF:2.408)
[30] Dong H, Jiang G, Zhang J, Kang Y. LncRNA OIP5-AS1 promotes the proliferation and migration of vascular smooth muscle cells via regulating miR-141-3p/HMGB1 pathway. Am J Med Sci. 2022;363(6):538-547. doi:10.1016/j.amjms.2022.02.012(IF:2.378)
[31] Su G, Sun G, Lv J, et al. Hsa_circ_0004831 downregulation is partially responsible for atorvastatinalleviated human umbilical vein endothelial cell injuries induced by ox-LDL through targeting the miR-182-5p/CXCL12 axis. BMC Cardiovasc Disord. 2021;21(1):221. Published 2021 May 1. doi:10.1186/s12872-021-01998-4(IF:2.298)
[32] Ma G, Bi S, Zhang P. Long non-coding RNA MIAT regulates ox-LDL-induced cell proliferation, migration and invasion by miR-641/STIM1 axis in human vascular smooth muscle cells. BMC Cardiovasc Disord. 2021;21(1):248. Published 2021 May 20. doi:10.1186/s12872-021-02048-9(IF:2.298)