第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

产品说明书

FAQ

COA

已发表文献

产品描述
 

Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅱ Reverse Transcriptase,RNase Inhibitor,dNTP,Random primers/Oligo dT Primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free H2O即可进行反应。Hifair® Ⅱ Reverse Transcriptase是在Hieff® M-MLV (RNase H) Reverse Transcriptase基础上通过基因工程技术得到新逆转录酶,与Hieff® M-MLV (RNase H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达50的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录

产品组分
 

编号

组分

产品编号/规格11120ES60 (100 T)

11120-A

RNase-free H2O

2×1 mL

11120-B

2×Hifair® Ⅱ SuperMix

1 mL

产品应用

适用于RT-qPCR实验。

运输和保存方法

冰袋运输。-20℃保存,有效期18个月。

第一链cDNA合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase free H2O

To 20 μL

25℃

5 min

2×Hifair® Ⅱ SuperMix

10 μL

42℃

30 min

Total RNA

1 ng -5 μg

85℃

5 min

or mRNA

1 ng-500 ng

   

【注】:

1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA

2. 逆转录温度:推荐使用42。对于GC含量模板或者复杂模板,可将逆转录温度提高到50℃。

逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复融。

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染;

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3)本产品仅作科研用途!

相关产品
 

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit 

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair®II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)

11123ES60

100 T

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141ES60

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11195ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11196ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11197ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11198ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11199ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11200ES08

5 mL

Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix

11184ES08

5 mL

 

HB210719

Q逆转录反应中的引物如何选择?

A根据实验目的不同,可按下列建议选择选择指南可见下表

a)对于全长第一链 cDNA 合成,且模板为真核生物来源,推荐选择Oligo (dT)引物。

b)当目标区域具有复杂二级结构或模板为原核生物来源,推荐选择 Random Primers 引物。

c)基因特异性引物(GSP)是与模板序列互补的引物,适用于目的序列已知的情况。

d)若逆转录后续为 qPCR 实验,可将 Oligo (dT)与Random Primers 混合使用。

逆转录引物选择指南

 

特征

优点

缺点

结合方式

Oligo (dT)

1)12-20 个T;

2)与真核生 mRNA 3 ’ Poly A 尾配对。

全长 cDNA。

1   polyA mRNA;

2  对模板 高。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Random Primers

1)6-9 个碱基;

2)可随机识别模板并结

杂结 微量模板。

特异性低, 小片段多。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

基因特异

GSP)

识别特定模板序列。

特异性强, 灵敏度高。

特定的序列。

 

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

A A 尾的 lncRNA 用预混液和 KIT  11123/11141/11121/11139) 都可以, circRNAmiRNA 和无 A 尾的 lncRNA   KIT11121/11139microRNA 需要特殊的茎环引物,需特别针对的逆转录试剂盒。

Q能否用来做 miRNA/circRNA/lncRNA 的逆转录?

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Q克隆逆转和定量逆转有什么区别?克隆逆转产物和定量逆转产物可以相互吗?

Aa)目的不同:克隆逆转后的 cDNA 后续用于基因克隆,后续实验以普通 PCR 为主; 定量逆转后的 cDNA 后续用于基因定量,后续实验以qPCR 为主。

b)逆转录过程不同:克隆逆转使用 Oligo dT,保证合成的长度。随机引物使用较少; 定量逆转使用 Oligo dT 或随机引物,或两者混合使用。

c)克隆逆转产物可用于 qPCR,但定量逆转产物不推荐用于普通 PCR,定量逆转试剂中含 Oligo (dT)与 Random Primers 混合引物,产物长度较短,可做短片段 PCR,过长的不适合。

Q逆转录试剂盒可以逆转真菌(或其他物种)RNA 吗?有没有专门针对真菌(或其他物种)的RNA 逆转录的试剂盒呢?

ARNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后, 逆转录试剂盒都可以用,没有特别针对的。

 

[1] Zhang J, Zhang G, Zhang W, et al. Loss of RBMS1 promotes anti-tumor immunity through enabling PD-L1 checkpoint blockade in triple-negative breast cancer [published online ahead of print, 2022 May 10]. Cell Death Differ. 2022;10.1038/s41418-022-01012-0. doi:10.1038/s41418-022-01012-0(IF:15.828)
[2] Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10(1):1973. Published 2019 Apr 29. doi:10.1038/s41467-019-09955-8(IF:11.878)
[3] Wang X, Ni J, You Y, et al. SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade. EMBO J. 2021;40(24):e108080. doi:10.15252/embj.2021108080(IF:11.598)
[4] Feng Y, Wang Y, Wang X, et al. Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription. Genome Biol. 2020;21(1):296. Published 2020 Dec 8. doi:10.1186/s13059-020-02201-1(IF:10.806)
[5] Tao X, Wan X, Wu D, Song E, Song Y. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage. J Hazard Mater. 2021;411:125134. doi:10.1016/j.jhazmat.2021.125134(IF:10.588)
[6] Alolga RN, Opoku-Damoah Y, Alagpulinsa DA, et al. Metabolomic and transcriptomic analyses of the anti-rheumatoid arthritis potential of xylopic acid in a bioinspired lipoprotein nanoformulation. Biomaterials. 2021;268:120482. doi:10.1016/j.biomaterials.2020.120482(IF:10.317)
[7] Mo X, Du S, Chen X, et al. Lactate Induces Production of the tRNAHis Half to Promote B-lymphoblastic Cell Proliferation. Mol Ther. 2020;28(11):2442-2457. doi:10.1016/j.ymthe.2020.09.010(IF:8.986)
[8] Hao W, Han J, Chu Y, et al. Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials. 2018;161:106-116. doi:10.1016/j.biomaterials.2018.01.034(IF:8.806)
[9] Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription. Theranostics. 2020;10(19):8834-8850. Published 2020 Jul 11. doi:10.7150/thno.45158(IF:8.579)
[10] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[11] Zhan T, Cui S, Shou H, et al. Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. Environ Pollut. 2021;286:117294. doi:10.1016/j.envpol.2021.117294(IF:8.071)
[12] Yu F, Zhu C, Ze S, et al. Design, Synthesis, and Bioevaluation of 2-Aminopteridin-7(8H)-one Derivatives as Novel Potent Adenosine A2A Receptor Antagonists for Cancer Immunotherapy. J Med Chem. 2022;65(5):4367-4386. doi:10.1021/acs.jmedchem.1c02199(IF:7.446)
[13] Zhu Y, Song D, Xu P, Sun J, Li L. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnol J. 2018;16(3):808-817. doi:10.1111/pbi.12830(IF:7.443)
[14] Liang R, Chen S, Jin Y, et al. The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr. 2022;10(3):e0230721. doi:10.1128/spectrum.02307-21(IF:7.171)
[15] Xiao C, Sun D, Liu B, et al. Nitrate transporter NRT1.1 and anion channel SLAH3 form a functional unit to regulate nitrate-dependent alleviation of ammonium toxicity. J Integr Plant Biol. 2022;64(4):942-957. doi:10.1111/jipb.13239(IF:7.061)
[16] Zhao Y, Ma T, Zou D. Identification of Unique Transcriptomic Signatures and Hub Genes Through RNA Sequencing and Integrated WGCNA and PPI Network Analysis in Nonerosive Reflux Disease. J Inflamm Res. 2021;14:6143-6156. Published 2021 Nov 23. doi:10.2147/JIR.S340452(IF:6.922)
[17] Zhu Y, Ren C, Jiang D, et al. RPL34-AS1-induced RPL34 inhibits cervical cancer cell tumorigenesis via the MDM2-P53 pathway. Cancer Sci. 2021;112(5):1811-1821. doi:10.1111/cas.14874(IF:6.716)
[18] Qiao K, Tian Y, Hu Z, Chai T. Wheat Cell Number Regulator CNR10 Enhances the Tolerance, Translocation, and Accumulation of Heavy Metals in Plants. Environ Sci Technol. 2019;53(2):860-867. doi:10.1021/acs.est.8b04021(IF:6.653)
[19] Xie ST, Chen AX, Song B, et al. Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. Brain Behav Immun. 2020;89:400-413. doi:10.1016/j.bbi.2020.07.027(IF:6.633)
[20] Zhang P, Lu S, Liu Z, et al. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr. 2021;8:790697. Published 2021 Dec 14. doi:10.3389/fnut.2021.790697(IF:6.576)
[21] Wang J, Hu R, Wang Z, et al. Establishment of Immortalized Yak Ruminal Epithelial Cell Lines by Lentivirus-Mediated SV40T and hTERT Gene Transduction. Oxid Med Cell Longev. 2022;2022:8128028. Published 2022 Mar 25. doi:10.1155/2022/8128028(IF:6.543)
[22] Lian B, Cai L, Zhang Z, et al. The anti-inflammatory effect of Pien Tze Huang in non-alcoholic fatty liver disease. Biomed Pharmacother. 2022;151:113076. doi:10.1016/j.biopha.2022.113076(IF:6.530)
[23] Ji L, Lin Z, Wan Z, et al. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis. 2020;11(4):250. Published 2020 Apr 20. doi:10.1038/s41419-020-2413-4(IF:6.304)
[24] Chen SP, Zhu GQ, Xing XX, et al. LncRNA USP2-AS1 Promotes Hepatocellular Carcinoma Growth by Enhancing YBX1-Mediated HIF1α Protein Translation Under Hypoxia. Front Oncol. 2022;12:882372. Published 2022 May 25. doi:10.3389/fonc.2022.882372(IF:6.244)
[25] Pan Y, Hu GY, Jiang S, et al. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol. 2021;11:637971. Published 2021 May 18. doi:10.3389/fonc.2021.637971(IF:6.244)
[26] Chen X, He H, Xiao Y, et al. CXCL10 Produced by HPV-Positive Cervical Cancer Cells Stimulates Exosomal PDL1 Expression by Fibroblasts via CXCR3 and JAK-STAT Pathways. Front Oncol. 2021;11:629350. Published 2021 Aug 6. doi:10.3389/fonc.2021.629350(IF:6.244)
[27] Xu L, Wang J, Liu B, et al. HDAC9 Contributes to Serous Ovarian Cancer Progression through Regulating Epithelial-Mesenchymal Transition. Biomedicines. 2022;10(2):374. Published 2022 Feb 3. doi:10.3390/biomedicines10020374(IF:6.081)
[28] Xue X, Shu M, Xiao Z, et al. Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci. 2022;65(4):757-769. doi:10.1007/s11427-020-1901-4(IF:6.038)
[29] Zhang KK, Liu JL, Chen LJ, et al. Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food Chem Toxicol. 2022;166:113208. doi:10.1016/j.fct.2022.113208(IF:6.025)
[30] Zhao J, Li R, Li Y, Chen J, Feng F, Sun C. Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production. Int J Mol Sci. 2021;22(9):4668. Published 2021 Apr 28. doi:10.3390/ijms22094668(IF:5.924)
[31] An L, Peng LY, Sun NY, et al. Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxid Redox Signal. 2019;30(15):1831-1848. doi:10.1089/ars.2018.7569(IF:5.828)
[32] Li D, He Q, Yang H, et al. Daily Dose of Bovine Lactoferrin Prevents Ethanol-Induced Liver Injury and Death in Male Mice by Regulating Hepatic Alcohol Metabolism and Modulating Gut Microbiota. Mol Nutr Food Res. 2021;65(18):e2100253. doi:10.1002/mnfr.202100253(IF:5.820)
[33] Chen LJ, He JT, Pan M, et al. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol. 2021;12:716703. Published 2021 Jul 26. doi:10.3389/fphar.2021.716703(IF:5.811)
[34] Liu P, Yang S, Wang Z, Dai H, Wang C. Feasibility and Mechanism Analysis of Shenfu Injection in the Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol. 2021;12:670146. Published 2021 Jul 28. doi:10.3389/fphar.2021.670146(IF:5.811)
[35] Wu F, Zhao Y, Shao Q, et al. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol. 2021;12:646331. Published 2021 May 13. doi:10.3389/fphar.2021.646331(IF:5.811)
[36] Qin Q, Yang B, Liu Z, Xu L, Song E, Song Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/β-catenin. Chemosphere. 2021;263:128125. doi:10.1016/j.chemosphere.2020.128125(IF:5.778)
[37] Cao L, Lu X, Wang G, et al. Maize ZmbZIP33 Is Involved in Drought Resistance and Recovery Ability Through an Abscisic Acid-Dependent Signaling Pathway. Front Plant Sci. 2021;12:629903. Published 2021 Apr 1. doi:10.3389/fpls.2021.629903(IF:5.754)
[38] Wei S, Zheng Q, Pan Y, Xu Y, Tang J, Cai X. Interplay between liver circadian rhythm and regeneration after PHx. Genomics. 2022;114(1):1-8. doi:10.1016/j.ygeno.2021.11.023(IF:5.736)
[39] Wang L, Liu XX, Yang YM, et al. RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression. Cancer Cell Int. 2021;21(1):590. Published 2021 Nov 4. doi:10.1186/s12935-021-02277-0(IF:5.722)
[40] Pan R, Lu Q, Ren C, et al. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging (Albany NY). 2021;13(13):17316-17327. doi:10.18632/aging.203212(IF:5.682)
[41] Cai D, Liu H, Wang J, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY). 2021;13(8):12160-12178. doi:10.18632/aging.202929(IF:5.682)
[42] Peng X, Zhang Y, Wan C, Gan Z, Chen C, Chen J. Antofine Triggers the Resistance Against Penicillium italicum in Ponkan Fruit by Driving AsA-GSH Cycle and ROS-Scavenging System. Front Microbiol. 2022;13:874430. Published 2022 Apr 12. doi:10.3389/fmicb.2022.874430(IF:5.640)
[43] Gong P, Kang J, Sadeghnezhad E, et al. Transcriptional Profiling of Resistant and Susceptible Cultivars of Grapevine (Vitis L.) Reveals Hypersensitive Responses to Plasmopara viticola. Front Microbiol. 2022;13:846504. Published 2022 Apr 25. doi:10.3389/fmicb.2022.846504(IF:5.640)
[44] Ma X, Chen J, Liu J, et al. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells toward CD133+ /CD44+ Colon cancer stem cells. J Cell Physiol. 2021;236(4):3114-3128. doi:10.1002/jcp.30080(IF:5.546)
[45] Cao J, Shao H, Hu J, et al. Identification of invasion-metastasis associated MiRNAs in gallbladder cancer by bioinformatics and experimental validation. J Transl Med. 2022;20(1):188. Published 2022 Apr 28. doi:10.1186/s12967-022-03394-8(IF:5.531)
[46] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[47] Wan Y, Yang S, Peng M, et al. Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. J Mater Chem B. 2020;8(26):5694-5706. doi:10.1039/d0tb01002b(IF:5.344)
[48] Wu F, Shao Q, Xia Q, et al. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. Phytomedicine. 2021;83:153487. doi:10.1016/j.phymed.2021.153487(IF:5.340)
[49] Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020;140:104814. doi:10.1016/j.nbd.2020.104814(IF:5.332)
[50] Cheng S, Wang D, Ke J, et al. Improved in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating. Colloids Surf B Biointerfaces. 2020;194:111176. doi:10.1016/j.colsurfb.2020.111176(IF:5.268)
[51] Wang L, Ouyang S, Li B, Wu H, Wang F. GSK-3β manipulates ferroptosis sensitivity by dominating iron homeostasis. Cell Death Discov. 2021;7(1):334. Published 2021 Nov 3. doi:10.1038/s41420-021-00726-3(IF:5.241)
[52] Zhang D, Tao L, Xu N, et al. CircRNA circTIAM1 promotes papillary thyroid cancer progression through the miR-646/HNRNPA1 signaling pathway. Cell Death Discov. 2022;8(1):21. Published 2022 Jan 12. doi:10.1038/s41420-021-00798-1(IF:5.241)
[53] Zhong J, Qiu X, Yu Q, Chen H, Yan C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol. 2020;163:464-475. doi:10.1016/j.ijbiomac.2020.06.266(IF:5.162)
[54] Yang Y, Wang J, Xu J, et al. Characterization of IL-22 Bioactivity and IL-22-Positive Cells in Grass Carp Ctenopharyngodon idella. Front Immunol. 2020;11:586889. Published 2020 Oct 6. doi:10.3389/fimmu.2020.586889(IF:5.085)
[55] He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation [published online ahead of print, 2021 May 25]. Life Sci. 2021;119651. doi:10.1016/j.lfs.2021.119651(IF:5.037)
[56] Chen J, Dong Z, Lei Y, et al. Vitamin C suppresses toxicological effects in MO/MФ and IgM+ B cells of Nile tilapia (Oreochromis niloticus) upon copper exposure. Aquat Toxicol. 2022;244:106100. doi:10.1016/j.aquatox.2022.106100(IF:4.964)
[57] Ma X, Xu J, Lu Q, et al. Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p. Int Immunopharmacol. 2022;107:108691. doi:10.1016/j.intimp.2022.108691(IF:4.932)
[58] Li S, Wang D, Wei P, et al. Elevated Natural Killer Cell-Mediated Cytotoxicity Is Associated with Cavity Formation in Pulmonary Tuberculosis Patients. J Immunol Res. 2021;2021:7925903. Published 2021 Oct 4. doi:10.1155/2021/7925903(IF:4.818)
[59] Tan XH, Zhang KK, Xu JT, et al. Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol. 2020;137:111179. doi:10.1016/j.fct.2020.111179(IF:4.679)
[60] Xu Y, Zhang G, Zou C, et al. Long non-coding RNA LINC01225 promotes proliferation, invasion and migration of gastric cancer via Wnt/β-catenin signalling pathway. J Cell Mol Med. 2019;23(11):7581-7591. doi:10.1111/jcmm.14627(IF:4.658)
[61] Shi YJ, Zhao QQ, Liu XS, et al. Toll-like receptor 4 regulates spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell Mol Med. 2020;24(1):385-397. doi:10.1111/jcmm.14742(IF:4.658)
[62] Zou Y, Xu X, Hu Q, Wang Y, Yang H, Zhang Z. Identification and diversity of fibrinogen-related protein (FREP) gene family in Haliotis discus hannai, H. rufescens, and H. laevigata and their responses to Vibrio parahemolyticus infection. Fish Shellfish Immunol. 2021;119:613-622. doi:10.1016/j.fsi.2021.10.041(IF:4.581)
[63] Cao L, Zhang P, Lu X, et al. Systematic Analysis of the Maize OSCA Genes Revealing ZmOSCA Family Members Involved in Osmotic Stress and ZmOSCA2.4 Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci. 2020;21(1):351. Published 2020 Jan 5. doi:10.3390/ijms21010351(IF:4.556)
[64] Ji Y, Yin W, Liang Y, Sun L, Yin Y, Zhang W. Anti-Inflammatory and Anti-Oxidative Activity of Indole-3-Acetic Acid Involves Induction of HO-1 and Neutralization of Free Radicals in RAW264.7 Cells. Int J Mol Sci. 2020;21(5):1579. Published 2020 Feb 25. doi:10.3390/ijms21051579(IF:4.556)
[65] Ren Z, Zhang Y, Cai T, et al. Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål). Microb Ecol. 2022;83(4):1049-1058. doi:10.1007/s00248-021-01820-w(IF:4.552)
[66] Wang C, Zheng D, Weng F, Jin Y, He L. Sodium butyrate ameliorates the cognitive impairment of Alzheimer's disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl). 2022;239(1):215-227. doi:10.1007/s00213-021-06025-0(IF:4.530)
[67] Xia S, Wang X, Yue P, Li Y, Zhang D. Establishment of induced pluripotent stem cell lines from a family of an ARVC patient receiving heart transplantation in infant age carrying compound heterozygous mutations in DSP gene. Stem Cell Res. 2020;48:101977. doi:10.1016/j.scr.2020.101977(IF:4.495)
[68] Pan J, Ren Q, Yang Z, et al. The effect of melatonin on the mouse ameloblast-lineage cell line ALCs. Sci Rep. 2022;12(1):8225. Published 2022 May 17. doi:10.1038/s41598-022-11912-3(IF:4.380)
[69] Xu Z, Zhou Y, Nong Q, et al. LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways. Cells. 2020;9(12):2599. Published 2020 Dec 4. doi:10.3390/cells9122599(IF:4.366)
[70] Xu Y, Cai Z, Ba L, et al. Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods. 2021;10(10):2434. Published 2021 Oct 13. doi:10.3390/foods10102434(IF:4.350)
[71] Liu Q, Wang X, Qin J, et al. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol. 2017;7:181. Published 2017 May 15. doi:10.3389/fcimb.2017.00181(IF:4.300)
[72] Chen X, Niu X, Liu Y, et al. Long-term correction of haemophilia B through CRISPR/Cas9 induced homology-independent targeted integration [published online ahead of print, 2022 Jun 9]. J Genet Genomics. 2022;S1673-8527(22)00159-X. doi:10.1016/j.jgg.2022.06.001(IF:4.275)
[73] Zheng T, Guan L, Yu K, et al. Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC Plant Biol. 2021;21(1):279. Published 2021 Jun 19. doi:10.1186/s12870-021-03073-8(IF:4.215)
[74] Kang J, Gong P, Ge M, et al. "The PLCP gene family of grapevine (Vitis vinifera L.): characterization and differential expression in response to Plasmopara Viticola" [published correction appears in BMC Plant Biol. 2021 Nov 20;21(1):548]. BMC Plant Biol. 2021;21(1):499. Published 2021 Oct 30. doi:10.1186/s12870-021-03279-w(IF:4.215)
[75] Ge M, Zhong R, Sadeghnezhad E, et al. Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC Plant Biol. 2022;22(1):217. Published 2022 Apr 28. doi:10.1186/s12870-022-03599-5(IF:4.215)
[76] Zheng T, Dong T, Haider MS, Jin H, Jia H, Fang J. Brassinosteroid Regulates 3-Hydroxy-3-methylglutaryl CoA Reductase to Promote Grape Fruit Development. J Agric Food Chem. 2020;68(43):11987-11996. doi:10.1021/acs.jafc.0c04466(IF:4.192)
[77] Cao L, Lu X, Zhang P, Wang G, Wei L, Wang T. Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses. Int J Mol Sci. 2019;20(17):4103. Published 2019 Aug 22. doi:10.3390/ijms20174103(IF:4.183)
[78] Zhao R , Ji Y , Chen X , et al. Effects of a β-type glycosidic polysaccharide from Flammulina velutipes on anti-inflammation and gut microbiota modulation in colitis mice. Food Funct. 2020;11(5):4259-4274. doi:10.1039/c9fo03017d(IF:4.171)
[79] Bai RB, Zhang YJ, Fan JM, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct. 2020;11(4):3306-3315. doi:10.1039/c9fo02969a(IF:4.171)
[80] Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des Devel Ther. 2021;15:3207-3221. Published 2021 Jul 21. doi:10.2147/DDDT.S319260(IF:4.162)
[81] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[82] Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother Res. 2021;35(3):1416-1431. doi:10.1002/ptr.6902(IF:4.087)
[83] Wang X, Hu H, Wu Z, et al. Tissue-specific transcriptome analyses reveal candidate genes for stilbene, flavonoid and anthraquinone biosynthesis in the medicinal plant Polygonum cuspidatum. BMC Genomics. 2021;22(1):353. Published 2021 May 17. doi:10.1186/s12864-021-07658-3(IF:3.969)
[84] Tu S, Wu J, Chen L, et al. LncRNA CALB2 sponges miR-30b-3p to promote odontoblast differentiation of human dental pulp stem cells via up-regulating RUNX2. Cell Signal. 2020;73:109695. doi:10.1016/j.cellsig.2020.109695(IF:3.968)
[85] Ren B, Cao J, He Y, Yang S, Zhang J. Assessment on effects of transplastomic potato plants expressing Colorado potato beetle β-Actin double-stranded RNAs for three non-target pests. Pestic Biochem Physiol. 2021;178:104909. doi:10.1016/j.pestbp.2021.104909(IF:3.963)
[86] Xu Y, Zhang G, Zou C, et al. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J Cell Physiol. 2019;234(7):11999-12010. doi:10.1002/jcp.27861(IF:3.923)
[87] Zhang G, Xu Y, Wang S, et al. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234(4):5163-5174. doi:10.1002/jcp.27320(IF:3.923)
[88] Chen L, Song H, Luo Z, et al. PHLPP2 is a novel biomarker and epigenetic target for the treatment of vitamin C in pancreatic cancer. Int J Oncol. 2020;56(5):1294-1303. doi:10.3892/ijo.2020.5001(IF:3.899)
[89] Lin C, Chen J, Hu M, Zheng W, Song Z, Qin H. Sesamol promotes browning of white adipocytes to ameliorate obesity by inducing mitochondrial biogenesis and inhibition mitophagy via β3-AR/PKA signaling pathway. Food Nutr Res. 2021;65:10.29219/fnr.v65.7577. Published 2021 May 10. doi:10.29219/fnr.v65.7577(IF:3.894)
[90] Hu Q, Qin Q, Xu S, et al. Pituitary Actions of EGF on Gonadotropins, Growth Hormone, Prolactin and Somatolactins in Grass Carp. Biology (Basel). 2020;9(9):279. Published 2020 Sep 8. doi:10.3390/biology9090279(IF:3.796)
[91] Dong Y, Yang Y, Wang Z, et al. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest Manag Sci. 2020;76(9):3168-3176. doi:10.1002/ps.5871(IF:3.750)
[92] Wang X, Wu Z, Bao W, et al. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Polygonum cuspidatum based on transcriptome data. BMC Plant Biol. 2019;19(1):498. Published 2019 Nov 14. doi:10.1186/s12870-019-2108-0(IF:3.670)
[93] Zhu Y, Du Q, Jiao N, et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sci. 2021;267:118881. doi:10.1016/j.lfs.2020.118881(IF:3.647)
[94] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[95] Cai Y, Liu Y, Sun Y, Ren Y. Mesenchyme homeobox 2 has a cancer-inhibiting function in breast carcinoma via affection of the PI3K/AKT/mTOR and ERK1/2 pathways. Biochem Biophys Res Commun. 2022;593:20-27. doi:10.1016/j.bbrc.2022.01.011(IF:3.575)
[96] Liu G, Liu Y, Niu B, et al. Genetic mutation of TRPV2 induces anxiety by decreasing GABA-B R2 expression in hippocampus. Biochem Biophys Res Commun. 2022;620:135-142. doi:10.1016/j.bbrc.2022.06.079(IF:3.575)
[97] Peng LY, An L, Sun NY, et al. Salvia miltiorrhiza Restrains Reactive Oxygen Species-Associated Pulmonary Fibrosis via Targeting Nrf2-Nox4 Redox Balance. Am J Chin Med. 2019;47(5):1113-1131. doi:10.1142/S0192415X19500575(IF:3.510)
[98] Chen J, Lei Y, Dong Z, et al. Toxicological damages on copper exposure to IgM+ B cells of Nile tilapia (Oreochromis niloticus) and mitigation of its adverse effects by β-glucan administration. Toxicol In Vitro. 2022;81:105334. doi:10.1016/j.tiv.2022.105334(IF:3.500)
[99] Wan X, He X, Liu Q, Wang X, Ding X, Li H. Frequent and mild scrotal heat stress in mice epigenetically alters glucose metabolism in the male offspring. Am J Physiol Endocrinol Metab. 2020;319(2):E291-E304. doi:10.1152/ajpendo.00038.2020(IF:3.469)
[100] Li H, Zhang P, Lin H, Gao H, Yin J. ETC-1002 Attenuates Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells via the AMPK/NF-κB Pathway and Exerts Ameliorative Effects in Experimental Periodontitis in Mice. Dis Markers. 2022;2022:8583674. Published 2022 Mar 16. doi:10.1155/2022/8583674(IF:3.434)
[101] Du Q, Zhang S, Li A, Mohammad IS, Liu B, Li Y. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice. Front Physiol. 2018;9:15. Published 2018 Jan 23. doi:10.3389/fphys.2018.00015(IF:3.394)
[102] Qi MM, He PZ, Zhang L, Dong WG. STAT3-mediated activation of mitochondrial pathway contributes to antitumor effect of dihydrotanshinone I in esophageal squamous cell carcinoma cells. World J Gastrointest Oncol. 2021;13(8):893-914. doi:10.4251/wjgo.v13.i8.893(IF:3.393)
[103] Liu Z, Lv X, Song E, Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol. 2020;407:115241. doi:10.1016/j.taap.2020.115241(IF:3.347)
[104] Cao L, Lu X, Wang G, et al. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics. 2021;296(6):1203-1219. doi:10.1007/s00438-021-01820-y(IF:3.291)
[105] Nie K, Cai M. SNAT2/SLC38A2 Confers the Stemness of Gastric Cancer Cells via Regulating Glutamine Level. Dig Dis Sci. 2022;67(7):2948-2956. doi:10.1007/s10620-021-07110-2(IF:3.199)
[106] Zhou E, Yan F, Li B, et al. Molecular and functional characterization of IL-6 receptor (IL-6R) and glycoprotein 130 (gp130) in Nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2020;106:103629. doi:10.1016/j.dci.2020.103629(IF:3.192)
[107] Wang J, Wang W, Xu J, et al. Structural insights into the co-evolution of IL-2 and its private receptor in fish. Dev Comp Immunol. 2021;115:103895. doi:10.1016/j.dci.2020.103895(IF:3.192)
[108] Duan C, Xu X, Lu X, Wang L, Lu Z. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 2022;22(1):137. Published 2022 Mar 26. doi:10.1186/s12876-022-02208-x(IF:3.067)
[109] Liu J, Liu Z, Li W, Zhang S. SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells. Oncol Lett. 2021;21(5):399. doi:10.3892/ol.2021.12660(IF:2.967)
[110] Liu Z, Wang Y, Qin W, et al. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol. 2019;33(11):e22395. doi:10.1002/jbt.22395(IF:2.965)
[111] Xu L, Xue T, Zhang J, Qu J. Knockdown of versican V1 induces a severe inflammatory response in LPS-induced acute lung injury via the TLR2-NF-κB signaling pathway in C57BL/6J mice. Mol Med Rep. 2016;13(6):5005-5012. doi:10.3892/mmr.2016.5168(IF:2.952)
[112] Mao K, Zhang X, Ali E, et al. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pestic Biochem Physiol. 2019;157:26-32. doi:10.1016/j.pestbp.2019.03.001(IF:2.870)
[113] Liao X, Xu PF, Gong PP, Wan H, Li JH. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect Sci. 2021;28(1):115-126. doi:10.1111/1744-7917.12764(IF:2.791)
[114] Cai T, Zhang Y, Liu Y, et al. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress. Insect Sci. 2021;28(2):355-362. doi:10.1111/1744-7917.12834(IF:2.791)
[115] Zhang J, Zhang B, Zhu F, Fu Y. Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pestic Biochem Physiol. 2021;172:104752. doi:10.1016/j.pestbp.2020.104752(IF:2.751)
[116] Lin K, Qu H, Tan Y, Deng T, Gao B, Wei N. Effects of the diphenylheptane extract of Alpinia officinarum rhizomes on ethanol-induced gastric ulcers in mice. Iran J Basic Med Sci. 2021;24(5):657-665. doi:10.22038/ijbms.2021.53644.12068(IF:2.699)
[117] Giri BR, Li H, Chen Y, Cheng G. Preliminary evaluation of neoblast-like stem cell factor and transcript expression profiles in Schistosoma japonicum. Acta Trop. 2018;187:57-64. doi:10.1016/j.actatropica.2018.07.022(IF:2.509)
[118] Xue Y, Fu W, Liu Y, et al. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Food Sci. 2020;85(11):4039-4049. doi:10.1111/1750-3841.15505(IF:2.479)
[119] Gao LP, Du MJ, Lv JJ, Schmull S, Huang RT, Li J. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch. Biomed Mater. 2017;12(6):065006. Published 2017 Oct 5. doi:10.1088/1748-605X/aa801b(IF:2.469)
[120] Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z. Long-Term Exposure to Low-Dose Lead Induced Deterioration in Bone Microstructure of Male Mice. Biol Trace Elem Res. 2020;195(2):491-498. doi:10.1007/s12011-019-01864-7(IF:2.431)
[121] Zhang X, Li X, Sheng Z, et al. Effects of Combined Exposure to Cadmium and High-Fat Diet on Bone Quality in Male Mice. Biol Trace Elem Res. 2020;193(2):434-444. doi:10.1007/s12011-019-01713-7(IF:2.431)
[122] Wang W, Shao A, Amombo E, Fan S, Xu X, Fu J. Transcriptome-wide identification of MAPKKK genes in bermudagrass (Cynodon dactylon L.) and their potential roles in low temperature stress responses. PeerJ. 2020;8:e10159. Published 2020 Oct 28. doi:10.7717/peerj.10159(IF:2.379)
[123] Ding Y, Liu G, Zeng F, Yan Y, Jing H, Jiang X. Adrenal gland responses surgical castration and immunocastration by different compensatory manners to increase DHEA secretion [published online ahead of print, 2021 Dec 14]. Anim Biotechnol. 2021;1-8. doi:10.1080/10495398.2021.2007116(IF:2.271)
[124] Zhang LL, Zhang XY, Lu YY, Bi YD, Liu XL, Fang F. The Role of Autophagy in Murine Cytomegalovirus Hepatitis. Viral Immunol. 2021;34(4):241-255. doi:10.1089/vim.2020.0024(IF:2.257)
[125] Li X, Chen T, Han Y, et al. Potential role of Methoprene-tolerant (Met) in methyl farnesoate-mediated vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol. 2021;252:110524. doi:10.1016/j.cbpb.2020.110524(IF:2.219)
[126] Chen T, Xu R, Sheng N, et al. Molecular evidence for farnesoic acid O-methyltransferase (FAMeT) involved in the biosynthesis of vitellogenin in the Chinese mitten crab Eriocheir sinensis. Anim Reprod Sci. 2021;234:106868. doi:10.1016/j.anireprosci.2021.106868(IF:2.145)
[127] Wu Y, Cui H, Zhang Y, et al. Inonotus obliquus extract alleviates myocardial ischemia/reperfusion injury by suppressing endoplasmic reticulum stress. Mol Med Rep. 2021;23(1):77. doi:10.3892/mmr.2020.11716(IF:2.100)
[128] Li X, Chen T, Jiang H, et al. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci. 2021;224:106653. doi:10.1016/j.anireprosci.2020.106653(IF:1.660)
[129] Liu X, Pi B, Pu J, Cheng C, Fang J, Yu B. Genome-wide analysis of chloride channel-encoding gene family members and identification of CLC genes that respond to Cl/salt stress in upland cotton. Mol Biol Rep. 2020;47(12):9361-9371. doi:10.1007/s11033-020-06023-z(IF:1.402)
[130] Li X, Lei Y, Yu Y, et al. Discovery and characterization of a novel splice variant of the p53 tumor suppressor gene in a human T cell leukemia cellline. Int J Clin Exp Pathol. 2020;13(5):1121-1135. Published 2020 May 1. (IF:0.252)
[131] Li X, Li M, Xu J, Zhang X, Xiao W, Zhang Z. Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice. J Toxicol. 2019;2019:8121834. Published 2019 Jun 20. doi:10.1155/2019/8121834(IF:0.000)

产品描述
 

Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅱ Reverse Transcriptase,RNase Inhibitor,dNTP,Random primers/Oligo dT Primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free H2O即可进行反应。Hifair® Ⅱ Reverse Transcriptase是在Hieff® M-MLV (RNase H) Reverse Transcriptase基础上通过基因工程技术得到新逆转录酶,与Hieff® M-MLV (RNase H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达50的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录

产品组分
 

编号

组分

产品编号/规格11120ES60 (100 T)

11120-A

RNase-free H2O

2×1 mL

11120-B

2×Hifair® Ⅱ SuperMix

1 mL

产品应用

适用于RT-qPCR实验。

运输和保存方法

冰袋运输。-20℃保存,有效期18个月。

第一链cDNA合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase free H2O

To 20 μL

25℃

5 min

2×Hifair® Ⅱ SuperMix

10 μL

42℃

30 min

Total RNA

1 ng -5 μg

85℃

5 min

or mRNA

1 ng-500 ng

   

【注】:

1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA

2. 逆转录温度:推荐使用42。对于GC含量模板或者复杂模板,可将逆转录温度提高到50℃。

逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复融。

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染;

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3)本产品仅作科研用途!

相关产品
 

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit 

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair®II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)

11123ES60

100 T

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141ES60

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11195ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11196ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11197ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11198ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11199ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11200ES08

5 mL

Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix

11184ES08

5 mL

 

HB210719

Q逆转录反应中的引物如何选择?

A根据实验目的不同,可按下列建议选择选择指南可见下表

a)对于全长第一链 cDNA 合成,且模板为真核生物来源,推荐选择Oligo (dT)引物。

b)当目标区域具有复杂二级结构或模板为原核生物来源,推荐选择 Random Primers 引物。

c)基因特异性引物(GSP)是与模板序列互补的引物,适用于目的序列已知的情况。

d)若逆转录后续为 qPCR 实验,可将 Oligo (dT)与Random Primers 混合使用。

逆转录引物选择指南

 

特征

优点

缺点

结合方式

Oligo (dT)

1)12-20 个T;

2)与真核生 mRNA 3 ’ Poly A 尾配对。

全长 cDNA。

1   polyA mRNA;

2  对模板 高。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Random Primers

1)6-9 个碱基;

2)可随机识别模板并结

杂结 微量模板。

特异性低, 小片段多。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

基因特异

GSP)

识别特定模板序列。

特异性强, 灵敏度高。

特定的序列。

 

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

A A 尾的 lncRNA 用预混液和 KIT  11123/11141/11121/11139) 都可以, circRNAmiRNA 和无 A 尾的 lncRNA   KIT11121/11139microRNA 需要特殊的茎环引物,需特别针对的逆转录试剂盒。

Q能否用来做 miRNA/circRNA/lncRNA 的逆转录?

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Q克隆逆转和定量逆转有什么区别?克隆逆转产物和定量逆转产物可以相互吗?

Aa)目的不同:克隆逆转后的 cDNA 后续用于基因克隆,后续实验以普通 PCR 为主; 定量逆转后的 cDNA 后续用于基因定量,后续实验以qPCR 为主。

b)逆转录过程不同:克隆逆转使用 Oligo dT,保证合成的长度。随机引物使用较少; 定量逆转使用 Oligo dT 或随机引物,或两者混合使用。

c)克隆逆转产物可用于 qPCR,但定量逆转产物不推荐用于普通 PCR,定量逆转试剂中含 Oligo (dT)与 Random Primers 混合引物,产物长度较短,可做短片段 PCR,过长的不适合。

Q逆转录试剂盒可以逆转真菌(或其他物种)RNA 吗?有没有专门针对真菌(或其他物种)的RNA 逆转录的试剂盒呢?

ARNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后, 逆转录试剂盒都可以用,没有特别针对的。

 

[1] Zhang J, Zhang G, Zhang W, et al. Loss of RBMS1 promotes anti-tumor immunity through enabling PD-L1 checkpoint blockade in triple-negative breast cancer [published online ahead of print, 2022 May 10]. Cell Death Differ. 2022;10.1038/s41418-022-01012-0. doi:10.1038/s41418-022-01012-0(IF:15.828)
[2] Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10(1):1973. Published 2019 Apr 29. doi:10.1038/s41467-019-09955-8(IF:11.878)
[3] Wang X, Ni J, You Y, et al. SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade. EMBO J. 2021;40(24):e108080. doi:10.15252/embj.2021108080(IF:11.598)
[4] Feng Y, Wang Y, Wang X, et al. Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription. Genome Biol. 2020;21(1):296. Published 2020 Dec 8. doi:10.1186/s13059-020-02201-1(IF:10.806)
[5] Tao X, Wan X, Wu D, Song E, Song Y. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage. J Hazard Mater. 2021;411:125134. doi:10.1016/j.jhazmat.2021.125134(IF:10.588)
[6] Alolga RN, Opoku-Damoah Y, Alagpulinsa DA, et al. Metabolomic and transcriptomic analyses of the anti-rheumatoid arthritis potential of xylopic acid in a bioinspired lipoprotein nanoformulation. Biomaterials. 2021;268:120482. doi:10.1016/j.biomaterials.2020.120482(IF:10.317)
[7] Mo X, Du S, Chen X, et al. Lactate Induces Production of the tRNAHis Half to Promote B-lymphoblastic Cell Proliferation. Mol Ther. 2020;28(11):2442-2457. doi:10.1016/j.ymthe.2020.09.010(IF:8.986)
[8] Hao W, Han J, Chu Y, et al. Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials. 2018;161:106-116. doi:10.1016/j.biomaterials.2018.01.034(IF:8.806)
[9] Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription. Theranostics. 2020;10(19):8834-8850. Published 2020 Jul 11. doi:10.7150/thno.45158(IF:8.579)
[10] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[11] Zhan T, Cui S, Shou H, et al. Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. Environ Pollut. 2021;286:117294. doi:10.1016/j.envpol.2021.117294(IF:8.071)
[12] Yu F, Zhu C, Ze S, et al. Design, Synthesis, and Bioevaluation of 2-Aminopteridin-7(8H)-one Derivatives as Novel Potent Adenosine A2A Receptor Antagonists for Cancer Immunotherapy. J Med Chem. 2022;65(5):4367-4386. doi:10.1021/acs.jmedchem.1c02199(IF:7.446)
[13] Zhu Y, Song D, Xu P, Sun J, Li L. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnol J. 2018;16(3):808-817. doi:10.1111/pbi.12830(IF:7.443)
[14] Liang R, Chen S, Jin Y, et al. The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr. 2022;10(3):e0230721. doi:10.1128/spectrum.02307-21(IF:7.171)
[15] Xiao C, Sun D, Liu B, et al. Nitrate transporter NRT1.1 and anion channel SLAH3 form a functional unit to regulate nitrate-dependent alleviation of ammonium toxicity. J Integr Plant Biol. 2022;64(4):942-957. doi:10.1111/jipb.13239(IF:7.061)
[16] Zhao Y, Ma T, Zou D. Identification of Unique Transcriptomic Signatures and Hub Genes Through RNA Sequencing and Integrated WGCNA and PPI Network Analysis in Nonerosive Reflux Disease. J Inflamm Res. 2021;14:6143-6156. Published 2021 Nov 23. doi:10.2147/JIR.S340452(IF:6.922)
[17] Zhu Y, Ren C, Jiang D, et al. RPL34-AS1-induced RPL34 inhibits cervical cancer cell tumorigenesis via the MDM2-P53 pathway. Cancer Sci. 2021;112(5):1811-1821. doi:10.1111/cas.14874(IF:6.716)
[18] Qiao K, Tian Y, Hu Z, Chai T. Wheat Cell Number Regulator CNR10 Enhances the Tolerance, Translocation, and Accumulation of Heavy Metals in Plants. Environ Sci Technol. 2019;53(2):860-867. doi:10.1021/acs.est.8b04021(IF:6.653)
[19] Xie ST, Chen AX, Song B, et al. Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. Brain Behav Immun. 2020;89:400-413. doi:10.1016/j.bbi.2020.07.027(IF:6.633)
[20] Zhang P, Lu S, Liu Z, et al. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr. 2021;8:790697. Published 2021 Dec 14. doi:10.3389/fnut.2021.790697(IF:6.576)
[21] Wang J, Hu R, Wang Z, et al. Establishment of Immortalized Yak Ruminal Epithelial Cell Lines by Lentivirus-Mediated SV40T and hTERT Gene Transduction. Oxid Med Cell Longev. 2022;2022:8128028. Published 2022 Mar 25. doi:10.1155/2022/8128028(IF:6.543)
[22] Lian B, Cai L, Zhang Z, et al. The anti-inflammatory effect of Pien Tze Huang in non-alcoholic fatty liver disease. Biomed Pharmacother. 2022;151:113076. doi:10.1016/j.biopha.2022.113076(IF:6.530)
[23] Ji L, Lin Z, Wan Z, et al. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis. 2020;11(4):250. Published 2020 Apr 20. doi:10.1038/s41419-020-2413-4(IF:6.304)
[24] Chen SP, Zhu GQ, Xing XX, et al. LncRNA USP2-AS1 Promotes Hepatocellular Carcinoma Growth by Enhancing YBX1-Mediated HIF1α Protein Translation Under Hypoxia. Front Oncol. 2022;12:882372. Published 2022 May 25. doi:10.3389/fonc.2022.882372(IF:6.244)
[25] Pan Y, Hu GY, Jiang S, et al. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol. 2021;11:637971. Published 2021 May 18. doi:10.3389/fonc.2021.637971(IF:6.244)
[26] Chen X, He H, Xiao Y, et al. CXCL10 Produced by HPV-Positive Cervical Cancer Cells Stimulates Exosomal PDL1 Expression by Fibroblasts via CXCR3 and JAK-STAT Pathways. Front Oncol. 2021;11:629350. Published 2021 Aug 6. doi:10.3389/fonc.2021.629350(IF:6.244)
[27] Xu L, Wang J, Liu B, et al. HDAC9 Contributes to Serous Ovarian Cancer Progression through Regulating Epithelial-Mesenchymal Transition. Biomedicines. 2022;10(2):374. Published 2022 Feb 3. doi:10.3390/biomedicines10020374(IF:6.081)
[28] Xue X, Shu M, Xiao Z, et al. Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci. 2022;65(4):757-769. doi:10.1007/s11427-020-1901-4(IF:6.038)
[29] Zhang KK, Liu JL, Chen LJ, et al. Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food Chem Toxicol. 2022;166:113208. doi:10.1016/j.fct.2022.113208(IF:6.025)
[30] Zhao J, Li R, Li Y, Chen J, Feng F, Sun C. Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production. Int J Mol Sci. 2021;22(9):4668. Published 2021 Apr 28. doi:10.3390/ijms22094668(IF:5.924)
[31] An L, Peng LY, Sun NY, et al. Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxid Redox Signal. 2019;30(15):1831-1848. doi:10.1089/ars.2018.7569(IF:5.828)
[32] Li D, He Q, Yang H, et al. Daily Dose of Bovine Lactoferrin Prevents Ethanol-Induced Liver Injury and Death in Male Mice by Regulating Hepatic Alcohol Metabolism and Modulating Gut Microbiota. Mol Nutr Food Res. 2021;65(18):e2100253. doi:10.1002/mnfr.202100253(IF:5.820)
[33] Chen LJ, He JT, Pan M, et al. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol. 2021;12:716703. Published 2021 Jul 26. doi:10.3389/fphar.2021.716703(IF:5.811)
[34] Liu P, Yang S, Wang Z, Dai H, Wang C. Feasibility and Mechanism Analysis of Shenfu Injection in the Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol. 2021;12:670146. Published 2021 Jul 28. doi:10.3389/fphar.2021.670146(IF:5.811)
[35] Wu F, Zhao Y, Shao Q, et al. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol. 2021;12:646331. Published 2021 May 13. doi:10.3389/fphar.2021.646331(IF:5.811)
[36] Qin Q, Yang B, Liu Z, Xu L, Song E, Song Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/β-catenin. Chemosphere. 2021;263:128125. doi:10.1016/j.chemosphere.2020.128125(IF:5.778)
[37] Cao L, Lu X, Wang G, et al. Maize ZmbZIP33 Is Involved in Drought Resistance and Recovery Ability Through an Abscisic Acid-Dependent Signaling Pathway. Front Plant Sci. 2021;12:629903. Published 2021 Apr 1. doi:10.3389/fpls.2021.629903(IF:5.754)
[38] Wei S, Zheng Q, Pan Y, Xu Y, Tang J, Cai X. Interplay between liver circadian rhythm and regeneration after PHx. Genomics. 2022;114(1):1-8. doi:10.1016/j.ygeno.2021.11.023(IF:5.736)
[39] Wang L, Liu XX, Yang YM, et al. RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression. Cancer Cell Int. 2021;21(1):590. Published 2021 Nov 4. doi:10.1186/s12935-021-02277-0(IF:5.722)
[40] Pan R, Lu Q, Ren C, et al. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging (Albany NY). 2021;13(13):17316-17327. doi:10.18632/aging.203212(IF:5.682)
[41] Cai D, Liu H, Wang J, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY). 2021;13(8):12160-12178. doi:10.18632/aging.202929(IF:5.682)
[42] Peng X, Zhang Y, Wan C, Gan Z, Chen C, Chen J. Antofine Triggers the Resistance Against Penicillium italicum in Ponkan Fruit by Driving AsA-GSH Cycle and ROS-Scavenging System. Front Microbiol. 2022;13:874430. Published 2022 Apr 12. doi:10.3389/fmicb.2022.874430(IF:5.640)
[43] Gong P, Kang J, Sadeghnezhad E, et al. Transcriptional Profiling of Resistant and Susceptible Cultivars of Grapevine (Vitis L.) Reveals Hypersensitive Responses to Plasmopara viticola. Front Microbiol. 2022;13:846504. Published 2022 Apr 25. doi:10.3389/fmicb.2022.846504(IF:5.640)
[44] Ma X, Chen J, Liu J, et al. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells toward CD133+ /CD44+ Colon cancer stem cells. J Cell Physiol. 2021;236(4):3114-3128. doi:10.1002/jcp.30080(IF:5.546)
[45] Cao J, Shao H, Hu J, et al. Identification of invasion-metastasis associated MiRNAs in gallbladder cancer by bioinformatics and experimental validation. J Transl Med. 2022;20(1):188. Published 2022 Apr 28. doi:10.1186/s12967-022-03394-8(IF:5.531)
[46] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[47] Wan Y, Yang S, Peng M, et al. Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. J Mater Chem B. 2020;8(26):5694-5706. doi:10.1039/d0tb01002b(IF:5.344)
[48] Wu F, Shao Q, Xia Q, et al. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. Phytomedicine. 2021;83:153487. doi:10.1016/j.phymed.2021.153487(IF:5.340)
[49] Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020;140:104814. doi:10.1016/j.nbd.2020.104814(IF:5.332)
[50] Cheng S, Wang D, Ke J, et al. Improved in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating. Colloids Surf B Biointerfaces. 2020;194:111176. doi:10.1016/j.colsurfb.2020.111176(IF:5.268)
[51] Wang L, Ouyang S, Li B, Wu H, Wang F. GSK-3β manipulates ferroptosis sensitivity by dominating iron homeostasis. Cell Death Discov. 2021;7(1):334. Published 2021 Nov 3. doi:10.1038/s41420-021-00726-3(IF:5.241)
[52] Zhang D, Tao L, Xu N, et al. CircRNA circTIAM1 promotes papillary thyroid cancer progression through the miR-646/HNRNPA1 signaling pathway. Cell Death Discov. 2022;8(1):21. Published 2022 Jan 12. doi:10.1038/s41420-021-00798-1(IF:5.241)
[53] Zhong J, Qiu X, Yu Q, Chen H, Yan C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol. 2020;163:464-475. doi:10.1016/j.ijbiomac.2020.06.266(IF:5.162)
[54] Yang Y, Wang J, Xu J, et al. Characterization of IL-22 Bioactivity and IL-22-Positive Cells in Grass Carp Ctenopharyngodon idella. Front Immunol. 2020;11:586889. Published 2020 Oct 6. doi:10.3389/fimmu.2020.586889(IF:5.085)
[55] He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation [published online ahead of print, 2021 May 25]. Life Sci. 2021;119651. doi:10.1016/j.lfs.2021.119651(IF:5.037)
[56] Chen J, Dong Z, Lei Y, et al. Vitamin C suppresses toxicological effects in MO/MФ and IgM+ B cells of Nile tilapia (Oreochromis niloticus) upon copper exposure. Aquat Toxicol. 2022;244:106100. doi:10.1016/j.aquatox.2022.106100(IF:4.964)
[57] Ma X, Xu J, Lu Q, et al. Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p. Int Immunopharmacol. 2022;107:108691. doi:10.1016/j.intimp.2022.108691(IF:4.932)
[58] Li S, Wang D, Wei P, et al. Elevated Natural Killer Cell-Mediated Cytotoxicity Is Associated with Cavity Formation in Pulmonary Tuberculosis Patients. J Immunol Res. 2021;2021:7925903. Published 2021 Oct 4. doi:10.1155/2021/7925903(IF:4.818)
[59] Tan XH, Zhang KK, Xu JT, et al. Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol. 2020;137:111179. doi:10.1016/j.fct.2020.111179(IF:4.679)
[60] Xu Y, Zhang G, Zou C, et al. Long non-coding RNA LINC01225 promotes proliferation, invasion and migration of gastric cancer via Wnt/β-catenin signalling pathway. J Cell Mol Med. 2019;23(11):7581-7591. doi:10.1111/jcmm.14627(IF:4.658)
[61] Shi YJ, Zhao QQ, Liu XS, et al. Toll-like receptor 4 regulates spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell Mol Med. 2020;24(1):385-397. doi:10.1111/jcmm.14742(IF:4.658)
[62] Zou Y, Xu X, Hu Q, Wang Y, Yang H, Zhang Z. Identification and diversity of fibrinogen-related protein (FREP) gene family in Haliotis discus hannai, H. rufescens, and H. laevigata and their responses to Vibrio parahemolyticus infection. Fish Shellfish Immunol. 2021;119:613-622. doi:10.1016/j.fsi.2021.10.041(IF:4.581)
[63] Cao L, Zhang P, Lu X, et al. Systematic Analysis of the Maize OSCA Genes Revealing ZmOSCA Family Members Involved in Osmotic Stress and ZmOSCA2.4 Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci. 2020;21(1):351. Published 2020 Jan 5. doi:10.3390/ijms21010351(IF:4.556)
[64] Ji Y, Yin W, Liang Y, Sun L, Yin Y, Zhang W. Anti-Inflammatory and Anti-Oxidative Activity of Indole-3-Acetic Acid Involves Induction of HO-1 and Neutralization of Free Radicals in RAW264.7 Cells. Int J Mol Sci. 2020;21(5):1579. Published 2020 Feb 25. doi:10.3390/ijms21051579(IF:4.556)
[65] Ren Z, Zhang Y, Cai T, et al. Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål). Microb Ecol. 2022;83(4):1049-1058. doi:10.1007/s00248-021-01820-w(IF:4.552)
[66] Wang C, Zheng D, Weng F, Jin Y, He L. Sodium butyrate ameliorates the cognitive impairment of Alzheimer's disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl). 2022;239(1):215-227. doi:10.1007/s00213-021-06025-0(IF:4.530)
[67] Xia S, Wang X, Yue P, Li Y, Zhang D. Establishment of induced pluripotent stem cell lines from a family of an ARVC patient receiving heart transplantation in infant age carrying compound heterozygous mutations in DSP gene. Stem Cell Res. 2020;48:101977. doi:10.1016/j.scr.2020.101977(IF:4.495)
[68] Pan J, Ren Q, Yang Z, et al. The effect of melatonin on the mouse ameloblast-lineage cell line ALCs. Sci Rep. 2022;12(1):8225. Published 2022 May 17. doi:10.1038/s41598-022-11912-3(IF:4.380)
[69] Xu Z, Zhou Y, Nong Q, et al. LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways. Cells. 2020;9(12):2599. Published 2020 Dec 4. doi:10.3390/cells9122599(IF:4.366)
[70] Xu Y, Cai Z, Ba L, et al. Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods. 2021;10(10):2434. Published 2021 Oct 13. doi:10.3390/foods10102434(IF:4.350)
[71] Liu Q, Wang X, Qin J, et al. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol. 2017;7:181. Published 2017 May 15. doi:10.3389/fcimb.2017.00181(IF:4.300)
[72] Chen X, Niu X, Liu Y, et al. Long-term correction of haemophilia B through CRISPR/Cas9 induced homology-independent targeted integration [published online ahead of print, 2022 Jun 9]. J Genet Genomics. 2022;S1673-8527(22)00159-X. doi:10.1016/j.jgg.2022.06.001(IF:4.275)
[73] Zheng T, Guan L, Yu K, et al. Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC Plant Biol. 2021;21(1):279. Published 2021 Jun 19. doi:10.1186/s12870-021-03073-8(IF:4.215)
[74] Kang J, Gong P, Ge M, et al. "The PLCP gene family of grapevine (Vitis vinifera L.): characterization and differential expression in response to Plasmopara Viticola" [published correction appears in BMC Plant Biol. 2021 Nov 20;21(1):548]. BMC Plant Biol. 2021;21(1):499. Published 2021 Oct 30. doi:10.1186/s12870-021-03279-w(IF:4.215)
[75] Ge M, Zhong R, Sadeghnezhad E, et al. Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC Plant Biol. 2022;22(1):217. Published 2022 Apr 28. doi:10.1186/s12870-022-03599-5(IF:4.215)
[76] Zheng T, Dong T, Haider MS, Jin H, Jia H, Fang J. Brassinosteroid Regulates 3-Hydroxy-3-methylglutaryl CoA Reductase to Promote Grape Fruit Development. J Agric Food Chem. 2020;68(43):11987-11996. doi:10.1021/acs.jafc.0c04466(IF:4.192)
[77] Cao L, Lu X, Zhang P, Wang G, Wei L, Wang T. Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses. Int J Mol Sci. 2019;20(17):4103. Published 2019 Aug 22. doi:10.3390/ijms20174103(IF:4.183)
[78] Zhao R , Ji Y , Chen X , et al. Effects of a β-type glycosidic polysaccharide from Flammulina velutipes on anti-inflammation and gut microbiota modulation in colitis mice. Food Funct. 2020;11(5):4259-4274. doi:10.1039/c9fo03017d(IF:4.171)
[79] Bai RB, Zhang YJ, Fan JM, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct. 2020;11(4):3306-3315. doi:10.1039/c9fo02969a(IF:4.171)
[80] Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des Devel Ther. 2021;15:3207-3221. Published 2021 Jul 21. doi:10.2147/DDDT.S319260(IF:4.162)
[81] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[82] Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother Res. 2021;35(3):1416-1431. doi:10.1002/ptr.6902(IF:4.087)
[83] Wang X, Hu H, Wu Z, et al. Tissue-specific transcriptome analyses reveal candidate genes for stilbene, flavonoid and anthraquinone biosynthesis in the medicinal plant Polygonum cuspidatum. BMC Genomics. 2021;22(1):353. Published 2021 May 17. doi:10.1186/s12864-021-07658-3(IF:3.969)
[84] Tu S, Wu J, Chen L, et al. LncRNA CALB2 sponges miR-30b-3p to promote odontoblast differentiation of human dental pulp stem cells via up-regulating RUNX2. Cell Signal. 2020;73:109695. doi:10.1016/j.cellsig.2020.109695(IF:3.968)
[85] Ren B, Cao J, He Y, Yang S, Zhang J. Assessment on effects of transplastomic potato plants expressing Colorado potato beetle β-Actin double-stranded RNAs for three non-target pests. Pestic Biochem Physiol. 2021;178:104909. doi:10.1016/j.pestbp.2021.104909(IF:3.963)
[86] Xu Y, Zhang G, Zou C, et al. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J Cell Physiol. 2019;234(7):11999-12010. doi:10.1002/jcp.27861(IF:3.923)
[87] Zhang G, Xu Y, Wang S, et al. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234(4):5163-5174. doi:10.1002/jcp.27320(IF:3.923)
[88] Chen L, Song H, Luo Z, et al. PHLPP2 is a novel biomarker and epigenetic target for the treatment of vitamin C in pancreatic cancer. Int J Oncol. 2020;56(5):1294-1303. doi:10.3892/ijo.2020.5001(IF:3.899)
[89] Lin C, Chen J, Hu M, Zheng W, Song Z, Qin H. Sesamol promotes browning of white adipocytes to ameliorate obesity by inducing mitochondrial biogenesis and inhibition mitophagy via β3-AR/PKA signaling pathway. Food Nutr Res. 2021;65:10.29219/fnr.v65.7577. Published 2021 May 10. doi:10.29219/fnr.v65.7577(IF:3.894)
[90] Hu Q, Qin Q, Xu S, et al. Pituitary Actions of EGF on Gonadotropins, Growth Hormone, Prolactin and Somatolactins in Grass Carp. Biology (Basel). 2020;9(9):279. Published 2020 Sep 8. doi:10.3390/biology9090279(IF:3.796)
[91] Dong Y, Yang Y, Wang Z, et al. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest Manag Sci. 2020;76(9):3168-3176. doi:10.1002/ps.5871(IF:3.750)
[92] Wang X, Wu Z, Bao W, et al. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Polygonum cuspidatum based on transcriptome data. BMC Plant Biol. 2019;19(1):498. Published 2019 Nov 14. doi:10.1186/s12870-019-2108-0(IF:3.670)
[93] Zhu Y, Du Q, Jiao N, et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sci. 2021;267:118881. doi:10.1016/j.lfs.2020.118881(IF:3.647)
[94] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[95] Cai Y, Liu Y, Sun Y, Ren Y. Mesenchyme homeobox 2 has a cancer-inhibiting function in breast carcinoma via affection of the PI3K/AKT/mTOR and ERK1/2 pathways. Biochem Biophys Res Commun. 2022;593:20-27. doi:10.1016/j.bbrc.2022.01.011(IF:3.575)
[96] Liu G, Liu Y, Niu B, et al. Genetic mutation of TRPV2 induces anxiety by decreasing GABA-B R2 expression in hippocampus. Biochem Biophys Res Commun. 2022;620:135-142. doi:10.1016/j.bbrc.2022.06.079(IF:3.575)
[97] Peng LY, An L, Sun NY, et al. Salvia miltiorrhiza Restrains Reactive Oxygen Species-Associated Pulmonary Fibrosis via Targeting Nrf2-Nox4 Redox Balance. Am J Chin Med. 2019;47(5):1113-1131. doi:10.1142/S0192415X19500575(IF:3.510)
[98] Chen J, Lei Y, Dong Z, et al. Toxicological damages on copper exposure to IgM+ B cells of Nile tilapia (Oreochromis niloticus) and mitigation of its adverse effects by β-glucan administration. Toxicol In Vitro. 2022;81:105334. doi:10.1016/j.tiv.2022.105334(IF:3.500)
[99] Wan X, He X, Liu Q, Wang X, Ding X, Li H. Frequent and mild scrotal heat stress in mice epigenetically alters glucose metabolism in the male offspring. Am J Physiol Endocrinol Metab. 2020;319(2):E291-E304. doi:10.1152/ajpendo.00038.2020(IF:3.469)
[100] Li H, Zhang P, Lin H, Gao H, Yin J. ETC-1002 Attenuates Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells via the AMPK/NF-κB Pathway and Exerts Ameliorative Effects in Experimental Periodontitis in Mice. Dis Markers. 2022;2022:8583674. Published 2022 Mar 16. doi:10.1155/2022/8583674(IF:3.434)
[101] Du Q, Zhang S, Li A, Mohammad IS, Liu B, Li Y. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice. Front Physiol. 2018;9:15. Published 2018 Jan 23. doi:10.3389/fphys.2018.00015(IF:3.394)
[102] Qi MM, He PZ, Zhang L, Dong WG. STAT3-mediated activation of mitochondrial pathway contributes to antitumor effect of dihydrotanshinone I in esophageal squamous cell carcinoma cells. World J Gastrointest Oncol. 2021;13(8):893-914. doi:10.4251/wjgo.v13.i8.893(IF:3.393)
[103] Liu Z, Lv X, Song E, Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol. 2020;407:115241. doi:10.1016/j.taap.2020.115241(IF:3.347)
[104] Cao L, Lu X, Wang G, et al. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics. 2021;296(6):1203-1219. doi:10.1007/s00438-021-01820-y(IF:3.291)
[105] Nie K, Cai M. SNAT2/SLC38A2 Confers the Stemness of Gastric Cancer Cells via Regulating Glutamine Level. Dig Dis Sci. 2022;67(7):2948-2956. doi:10.1007/s10620-021-07110-2(IF:3.199)
[106] Zhou E, Yan F, Li B, et al. Molecular and functional characterization of IL-6 receptor (IL-6R) and glycoprotein 130 (gp130) in Nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2020;106:103629. doi:10.1016/j.dci.2020.103629(IF:3.192)
[107] Wang J, Wang W, Xu J, et al. Structural insights into the co-evolution of IL-2 and its private receptor in fish. Dev Comp Immunol. 2021;115:103895. doi:10.1016/j.dci.2020.103895(IF:3.192)
[108] Duan C, Xu X, Lu X, Wang L, Lu Z. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 2022;22(1):137. Published 2022 Mar 26. doi:10.1186/s12876-022-02208-x(IF:3.067)
[109] Liu J, Liu Z, Li W, Zhang S. SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells. Oncol Lett. 2021;21(5):399. doi:10.3892/ol.2021.12660(IF:2.967)
[110] Liu Z, Wang Y, Qin W, et al. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol. 2019;33(11):e22395. doi:10.1002/jbt.22395(IF:2.965)
[111] Xu L, Xue T, Zhang J, Qu J. Knockdown of versican V1 induces a severe inflammatory response in LPS-induced acute lung injury via the TLR2-NF-κB signaling pathway in C57BL/6J mice. Mol Med Rep. 2016;13(6):5005-5012. doi:10.3892/mmr.2016.5168(IF:2.952)
[112] Mao K, Zhang X, Ali E, et al. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pestic Biochem Physiol. 2019;157:26-32. doi:10.1016/j.pestbp.2019.03.001(IF:2.870)
[113] Liao X, Xu PF, Gong PP, Wan H, Li JH. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect Sci. 2021;28(1):115-126. doi:10.1111/1744-7917.12764(IF:2.791)
[114] Cai T, Zhang Y, Liu Y, et al. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress. Insect Sci. 2021;28(2):355-362. doi:10.1111/1744-7917.12834(IF:2.791)
[115] Zhang J, Zhang B, Zhu F, Fu Y. Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pestic Biochem Physiol. 2021;172:104752. doi:10.1016/j.pestbp.2020.104752(IF:2.751)
[116] Lin K, Qu H, Tan Y, Deng T, Gao B, Wei N. Effects of the diphenylheptane extract of Alpinia officinarum rhizomes on ethanol-induced gastric ulcers in mice. Iran J Basic Med Sci. 2021;24(5):657-665. doi:10.22038/ijbms.2021.53644.12068(IF:2.699)
[117] Giri BR, Li H, Chen Y, Cheng G. Preliminary evaluation of neoblast-like stem cell factor and transcript expression profiles in Schistosoma japonicum. Acta Trop. 2018;187:57-64. doi:10.1016/j.actatropica.2018.07.022(IF:2.509)
[118] Xue Y, Fu W, Liu Y, et al. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Food Sci. 2020;85(11):4039-4049. doi:10.1111/1750-3841.15505(IF:2.479)
[119] Gao LP, Du MJ, Lv JJ, Schmull S, Huang RT, Li J. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch. Biomed Mater. 2017;12(6):065006. Published 2017 Oct 5. doi:10.1088/1748-605X/aa801b(IF:2.469)
[120] Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z. Long-Term Exposure to Low-Dose Lead Induced Deterioration in Bone Microstructure of Male Mice. Biol Trace Elem Res. 2020;195(2):491-498. doi:10.1007/s12011-019-01864-7(IF:2.431)
[121] Zhang X, Li X, Sheng Z, et al. Effects of Combined Exposure to Cadmium and High-Fat Diet on Bone Quality in Male Mice. Biol Trace Elem Res. 2020;193(2):434-444. doi:10.1007/s12011-019-01713-7(IF:2.431)
[122] Wang W, Shao A, Amombo E, Fan S, Xu X, Fu J. Transcriptome-wide identification of MAPKKK genes in bermudagrass (Cynodon dactylon L.) and their potential roles in low temperature stress responses. PeerJ. 2020;8:e10159. Published 2020 Oct 28. doi:10.7717/peerj.10159(IF:2.379)
[123] Ding Y, Liu G, Zeng F, Yan Y, Jing H, Jiang X. Adrenal gland responses surgical castration and immunocastration by different compensatory manners to increase DHEA secretion [published online ahead of print, 2021 Dec 14]. Anim Biotechnol. 2021;1-8. doi:10.1080/10495398.2021.2007116(IF:2.271)
[124] Zhang LL, Zhang XY, Lu YY, Bi YD, Liu XL, Fang F. The Role of Autophagy in Murine Cytomegalovirus Hepatitis. Viral Immunol. 2021;34(4):241-255. doi:10.1089/vim.2020.0024(IF:2.257)
[125] Li X, Chen T, Han Y, et al. Potential role of Methoprene-tolerant (Met) in methyl farnesoate-mediated vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol. 2021;252:110524. doi:10.1016/j.cbpb.2020.110524(IF:2.219)
[126] Chen T, Xu R, Sheng N, et al. Molecular evidence for farnesoic acid O-methyltransferase (FAMeT) involved in the biosynthesis of vitellogenin in the Chinese mitten crab Eriocheir sinensis. Anim Reprod Sci. 2021;234:106868. doi:10.1016/j.anireprosci.2021.106868(IF:2.145)
[127] Wu Y, Cui H, Zhang Y, et al. Inonotus obliquus extract alleviates myocardial ischemia/reperfusion injury by suppressing endoplasmic reticulum stress. Mol Med Rep. 2021;23(1):77. doi:10.3892/mmr.2020.11716(IF:2.100)
[128] Li X, Chen T, Jiang H, et al. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci. 2021;224:106653. doi:10.1016/j.anireprosci.2020.106653(IF:1.660)
[129] Liu X, Pi B, Pu J, Cheng C, Fang J, Yu B. Genome-wide analysis of chloride channel-encoding gene family members and identification of CLC genes that respond to Cl/salt stress in upland cotton. Mol Biol Rep. 2020;47(12):9361-9371. doi:10.1007/s11033-020-06023-z(IF:1.402)
[130] Li X, Lei Y, Yu Y, et al. Discovery and characterization of a novel splice variant of the p53 tumor suppressor gene in a human T cell leukemia cellline. Int J Clin Exp Pathol. 2020;13(5):1121-1135. Published 2020 May 1. (IF:0.252)
[131] Li X, Li M, Xu J, Zhang X, Xiao W, Zhang Z. Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice. J Toxicol. 2019;2019:8121834. Published 2019 Jun 20. doi:10.1155/2019/8121834(IF:0.000)

第四代逆转录酶200U/μL(Hifair® IV Reverse Transcriptase)

第四代逆转录酶200U/μL(Hifair® IV Reverse Transcriptase)

产品说明书

FAQ

COA

已发表文献

 

Hifair® IV Reverse Transcriptase是Hieff® M-MLV (H) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受60℃,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合低拷贝基因的逆转录和mRNA文库构建。Hifair® IV Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA

 

产品组分

编号

组分

产品编号/规格

11112ES92 (10000 U)

11112ES93 (10000 U)

11112-A

5×Hifair® IV Buffer

250 μL

1200 μL

11112-B

Hifair® IV Reverse Transcriptase (200 U/μL)

50 μL

250 μL

 

产品应用

全长cDNA文库构建;终点法PCR;实时定量PCR等。

 

活性定义

Poly(A) .Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

 

运输与保存方法

冰袋运输。-20ºC保存,有效期一年。

 

注意事项

1)请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染;

2)所有操作均应在冰上进行,防止发生RNA降解;

3)为保证逆转录成功,建议使用高质量的RNA样本;

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅做科研用途!

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNase free ddH2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)  

or Gene Specific Primers(2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 10 pg -5 μg或mRNA:1 pg-500 ng

65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后加入下表中的逆转录反应液,并用移液器轻轻吹打混匀。

2. 逆转录反应液配制

组分

使用量

上一步的反应液

13 μL

5×Hifair® IV Buffer

4 μL

dNTP Mix(10 mM)

1 μL

Hifair® IV Reverse Transcriptase (200 U/μL)

1 μL

RNase Inhibitor (40 U/µL)

1 μL

3. 逆转录程序设置

温度

时间

25℃

5 min

50℃

15 min

85℃

5 min

【注】:1)当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18Gene Specific Primers,此步可省略;

2)逆转录温度:推荐使用50℃。对于GC含量模板或者复杂模板,可将逆转录温度提高到55℃-60℃;

3)85℃加热5 min,目的是使逆转录酶失活。

※ 逆转录产物可立即用于后续PCR或qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

HB221229

第四代逆转录酶200U/μL(Hifair® IV Reverse Transcriptase)

暂无内容

第四代逆转录酶200U/μL(Hifair® IV Reverse Transcriptase)

暂无内容

 

Hifair® IV Reverse Transcriptase是Hieff® M-MLV (H) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受60℃,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合低拷贝基因的逆转录和mRNA文库构建。Hifair® IV Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA

 

产品组分

编号

组分

产品编号/规格

11112ES92 (10000 U)

11112ES93 (10000 U)

11112-A

5×Hifair® IV Buffer

250 μL

1200 μL

11112-B

Hifair® IV Reverse Transcriptase (200 U/μL)

50 μL

250 μL

 

产品应用

全长cDNA文库构建;终点法PCR;实时定量PCR等。

 

活性定义

Poly(A) .Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

 

运输与保存方法

冰袋运输。-20ºC保存,有效期一年。

 

注意事项

1)请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染;

2)所有操作均应在冰上进行,防止发生RNA降解;

3)为保证逆转录成功,建议使用高质量的RNA样本;

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅做科研用途!

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNase free ddH2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)  

or Gene Specific Primers(2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 10 pg -5 μg或mRNA:1 pg-500 ng

65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后加入下表中的逆转录反应液,并用移液器轻轻吹打混匀。

2. 逆转录反应液配制

组分

使用量

上一步的反应液

13 μL

5×Hifair® IV Buffer

4 μL

dNTP Mix(10 mM)

1 μL

Hifair® IV Reverse Transcriptase (200 U/μL)

1 μL

RNase Inhibitor (40 U/µL)

1 μL

3. 逆转录程序设置

温度

时间

25℃

5 min

50℃

15 min

85℃

5 min

【注】:1)当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18Gene Specific Primers,此步可省略;

2)逆转录温度:推荐使用50℃。对于GC含量模板或者复杂模板,可将逆转录温度提高到55℃-60℃;

3)85℃加热5 min,目的是使逆转录酶失活。

※ 逆转录产物可立即用于后续PCR或qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

HB221229

第四代逆转录酶200U/μL(Hifair® IV Reverse Transcriptase)

暂无内容

第四代逆转录酶200U/μL(Hifair® IV Reverse Transcriptase)

暂无内容

第三代耐热逆转录酶(无甘油版)|Hifair® III Reverse Transcriptase Glycerol-free

第三代耐热逆转录酶(无甘油版)|Hifair® III Reverse Transcriptase Glycerol-free

产品说明书

FAQ

COA

已发表文献

Hifair® III Reverse Transcriptase在Hieff® M-MLV (H) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达65℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® III Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达19.8 kb的cDNA。Hifair® III Reverse Transcriptase, 600 U/μL, Glycerol-free第三代耐热逆转录酶(无甘油版)可用于制备冻干制剂、可冻干RT-LAMP试剂等。

 

产品组分

编号

组分

产品编号/规格

11297ES09 (6 KU)

11297ES12 (12 KU)

11297ES75 (300 KU)

11297

Hifair® III Reverse Transcriptase (600 U/μL)

10 μL

20 μL

500 μL

 

产品应用

冻干制剂、可冻干RT-LAMP试剂盒。

 

活性定义

以Poly(A).Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

 

运输与保存方法

冰袋运输。4℃保存,效期6个月。

 

注意事项

1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。

2. 所有操作均应在冰上进行,防止RNA降解。

3. 为保证高效率逆转录,建议使用高质量的RNA样本。

4. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

参考操作步骤

1. 体系配置:

组分

组分

使用量

13840-A

10×Bst Buffer

2.5 µL

13840-C

100 mmol/L MgSO4

2 µL

dNTP Mix (100 mmol/L)

dNTP Mix (100 mmol/L)

3.5 µL

dUTP Mix (100 mmol/L)(可选)

dUTP Mix (100 mmol/L)(可选)

0.35 µL

11297

Hifair® III Reverse Transcriptase (600 U/µL, Glycerol-free)

0.1 µL

10703

Murine RNase inhibitor (200 U/µL, Glycerol-free)

0.2 µL

13839(可选)

Heat Labile UDG (200 U/µL)(可选)

0.005 µL

10×Primersa

10×Primers

2 µL

13840-Bb

Bst Ⅱ Plus DNA polymerase (120 U/µL, Glycerol-free)

0.5 µL

RNase free ddH2O

RNase free ddH2O

To 25 µL

a. 10×Primers:16 µmol/L FIP/BIP, 2 µmol/L F3/B3, 4 µmol/L Loop F/B each;引物组的比例也可以进行适当的调整。

b. 可根据实验具体情况来调整用量。

2. 反应程序设置

温度

时间

作用

37℃

2 min

消化

65℃

30-60 mina

逆转录和恒温扩增

85℃

10 min

灭活

a. 探针法的引物可以直接选择目的通道收集荧光,1 min采集一次荧光。染料法可以额外添加货号为13841的染料,通道选择SYBR,1 min采集一次荧光。   

 

相关产品

 

产品名称

货号

规格

Bst Ⅱ Plus DNA Polymerase (40 U/μL)

14402ES92

8,000 U

Bst Ⅱ Plus DNA Polymerase (2,000 U/μL)

14403ES20

20,000 U

10× Bst Ⅱ Plus DNA Polymerase Buffer

15441ES03

1 mL

RT-LAMP Dye Assay Kit(UDG plus)

13762ES60

100 T

RT-LAMP pH Sensitive Dyestuff Kit

13906ES65

100 T

新冠RT-LAMP检测预混液 RT-LAMP COVID-19 Primer Master Mix (N)

13995ES60

100 T

Uracil DNA Glycosylase (UDG),   Heat-Labile (Glycerol-Free)

10707ES60

100 U

Hifair® III Reverse Transcriptase,200 U/μL,Glycerol-free

11302ES12

10,000 U

Murine RNase Inhibitor(200   U/µL,Glycerol-free)

10703ES05

2 KU

Murine RNase Inhibitor(40   U/µL,Glycerol-free)

10701ES05

2 KU

Hifair® V Reverse Transcriptase 第五代耐热逆转录酶

11300ES92

10,000 U

HB220720

第三代耐热逆转录酶(无甘油版)|Hifair® III Reverse Transcriptase Glycerol-free

暂无内容

[1] Huang R, Xu L, Wang Y, et al. Efficient fabrication of stretching hydrogels with programmable strain gradients as cell sheet delivery vehicles. Mater Sci Eng C Mater Biol Appl. 2021;129:112415. doi:10.1016/j.msec.2021.112415(IF:7.328)
[2] Zhang ZP, Bai X, Cui WB, et al. Diterpenoid Caesalmin C Delays Aβ-Induced Paralysis Symptoms via the DAF-16 Pathway in Caenorhabditis elegans. Int J Mol Sci. 2022;23(12):6871. Published 2022 Jun 20. doi:10.3390/ijms23126871(IF:5.924)
[3] Li N, Lin SM, Li Y, Sun J, Zhang L, Chen M. An induced pluripotent stem cell line (GZHMCi004-A) derived from a fetus with heterozygous G380R mutation in FGFR3 gene causing achondroplasia. Stem Cell Res. 2021;53:102322. doi:10.1016/j.scr.2021.102322(IF:2.020)
[4] Jia N, Gong X, Chen J, et al. Generation of an induced pluripotent stem cell line (OGHFUi001-A) from a type 1 early infantile epileptic encephalopathy with ARX mutation. Stem Cell Res. 2021;53:102367. doi:10.1016/j.scr.2021.102367(IF:2.020)
[5] Chen M, Lin SM, Li N, Li Y, Li Y, Zhang L. An induced pluripotent stem cell line (GZHMCi003-A) derived from a fetus with exon 3 heterozygous deletion in RUNX2 gene causing cleidocranial dysplasia. Stem Cell Res. 2021;51:102166. doi:10.1016/j.scr.2021.102166(IF:2.020)

Hifair® III Reverse Transcriptase在Hieff® M-MLV (H) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达65℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® III Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达19.8 kb的cDNA。Hifair® III Reverse Transcriptase, 600 U/μL, Glycerol-free第三代耐热逆转录酶(无甘油版)可用于制备冻干制剂、可冻干RT-LAMP试剂等。

 

产品组分

编号

组分

产品编号/规格

11297ES09 (6 KU)

11297ES12 (12 KU)

11297ES75 (300 KU)

11297

Hifair® III Reverse Transcriptase (600 U/μL)

10 μL

20 μL

500 μL

 

产品应用

冻干制剂、可冻干RT-LAMP试剂盒。

 

活性定义

以Poly(A).Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

 

运输与保存方法

冰袋运输。4℃保存,效期6个月。

 

注意事项

1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。

2. 所有操作均应在冰上进行,防止RNA降解。

3. 为保证高效率逆转录,建议使用高质量的RNA样本。

4. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

参考操作步骤

1. 体系配置:

组分

组分

使用量

13840-A

10×Bst Buffer

2.5 µL

13840-C

100 mmol/L MgSO4

2 µL

dNTP Mix (100 mmol/L)

dNTP Mix (100 mmol/L)

3.5 µL

dUTP Mix (100 mmol/L)(可选)

dUTP Mix (100 mmol/L)(可选)

0.35 µL

11297

Hifair® III Reverse Transcriptase (600 U/µL, Glycerol-free)

0.1 µL

10703

Murine RNase inhibitor (200 U/µL, Glycerol-free)

0.2 µL

13839(可选)

Heat Labile UDG (200 U/µL)(可选)

0.005 µL

10×Primersa

10×Primers

2 µL

13840-Bb

Bst Ⅱ Plus DNA polymerase (120 U/µL, Glycerol-free)

0.5 µL

RNase free ddH2O

RNase free ddH2O

To 25 µL

a. 10×Primers:16 µmol/L FIP/BIP, 2 µmol/L F3/B3, 4 µmol/L Loop F/B each;引物组的比例也可以进行适当的调整。

b. 可根据实验具体情况来调整用量。

2. 反应程序设置

温度

时间

作用

37℃

2 min

消化

65℃

30-60 mina

逆转录和恒温扩增

85℃

10 min

灭活

a. 探针法的引物可以直接选择目的通道收集荧光,1 min采集一次荧光。染料法可以额外添加货号为13841的染料,通道选择SYBR,1 min采集一次荧光。   

 

相关产品

 

产品名称

货号

规格

Bst Ⅱ Plus DNA Polymerase (40 U/μL)

14402ES92

8,000 U

Bst Ⅱ Plus DNA Polymerase (2,000 U/μL)

14403ES20

20,000 U

10× Bst Ⅱ Plus DNA Polymerase Buffer

15441ES03

1 mL

RT-LAMP Dye Assay Kit(UDG plus)

13762ES60

100 T

RT-LAMP pH Sensitive Dyestuff Kit

13906ES65

100 T

新冠RT-LAMP检测预混液 RT-LAMP COVID-19 Primer Master Mix (N)

13995ES60

100 T

Uracil DNA Glycosylase (UDG),   Heat-Labile (Glycerol-Free)

10707ES60

100 U

Hifair® III Reverse Transcriptase,200 U/μL,Glycerol-free

11302ES12

10,000 U

Murine RNase Inhibitor(200   U/µL,Glycerol-free)

10703ES05

2 KU

Murine RNase Inhibitor(40   U/µL,Glycerol-free)

10701ES05

2 KU

Hifair® V Reverse Transcriptase 第五代耐热逆转录酶

11300ES92

10,000 U

HB220720

第三代耐热逆转录酶(无甘油版)|Hifair® III Reverse Transcriptase Glycerol-free

暂无内容

[1] Huang R, Xu L, Wang Y, et al. Efficient fabrication of stretching hydrogels with programmable strain gradients as cell sheet delivery vehicles. Mater Sci Eng C Mater Biol Appl. 2021;129:112415. doi:10.1016/j.msec.2021.112415(IF:7.328)
[2] Zhang ZP, Bai X, Cui WB, et al. Diterpenoid Caesalmin C Delays Aβ-Induced Paralysis Symptoms via the DAF-16 Pathway in Caenorhabditis elegans. Int J Mol Sci. 2022;23(12):6871. Published 2022 Jun 20. doi:10.3390/ijms23126871(IF:5.924)
[3] Li N, Lin SM, Li Y, Sun J, Zhang L, Chen M. An induced pluripotent stem cell line (GZHMCi004-A) derived from a fetus with heterozygous G380R mutation in FGFR3 gene causing achondroplasia. Stem Cell Res. 2021;53:102322. doi:10.1016/j.scr.2021.102322(IF:2.020)
[4] Jia N, Gong X, Chen J, et al. Generation of an induced pluripotent stem cell line (OGHFUi001-A) from a type 1 early infantile epileptic encephalopathy with ARX mutation. Stem Cell Res. 2021;53:102367. doi:10.1016/j.scr.2021.102367(IF:2.020)
[5] Chen M, Lin SM, Li N, Li Y, Li Y, Zhang L. An induced pluripotent stem cell line (GZHMCi003-A) derived from a fetus with exon 3 heterozygous deletion in RUNX2 gene causing cleidocranial dysplasia. Stem Cell Res. 2021;51:102166. doi:10.1016/j.scr.2021.102166(IF:2.020)

第三代耐热逆转录酶Hifair® Ⅲ Reverse Transcriptase

第三代耐热逆转录酶Hifair® Ⅲ Reverse Transcriptase

产品说明书

FAQ

COA

已发表文献

Hifair® Ⅲ Reverse Transcriptase是在Hifair® Ⅱ Reverse Transcriptase基础上通过基因工程技术得到的新一代逆转录酶,与Hifair® Ⅱ Reverse Transcriptase相比,其cDNA合成速度快,且热稳定性大幅度提高,可耐受高达60的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录。Hifair® Ⅲ Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达19.8 kbcDNA

产品组分
 

组分编号

组分名称

产品编号/规格

14601ES03

14601ES10 

14601ES76 

14601-A

Hifair® Ⅲ Reverse Transcriptase (800 U/μL)

1 mL

10 mL

500 mL

产品应用

全长cDNA文库构建;终点法PCR;实时定量PCR等。

活性定义

Poly(A) .Oligo(dT)为模板引物,在37℃10 min内,将1 nmoldTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

运输与保存方法

冰袋运输。-20℃保存,有效期1年。

注意事项

1)请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染

2)所有操作均应在冰上进行,防止RNA降解

3)为保证高效率逆转录,建议使用高质量的RNA样本

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅作科研用途!

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNasefree H2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)  

or Gene Specific Primers (2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 10 pg -5 μgmRNA:10 pg-500 ng

65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后加入下表中的逆转录反应液,并用移液器轻轻吹打混匀。

2. 逆转录反应体系配制(20 μL体系)

组分

使用量

上一步的反应液

13 μL

5×Hifair® Ⅲ Buffer (Cat#15662)

4 μL

dNTP Mix (10 mM)

1 μL

Hifair® Ⅲ Reverse Transcriptase (800 U/μL)

200 U

RNase inhibitor (40 U/µL)

1 μL

3. 逆转录程序设置

温度

时间

25℃

5 min

55

1530 min

85℃

5 min

】:1)当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18Gene Specific Primers,此步可省略;

2)逆转录温度:推荐使用55;对于GC含量模板或者复杂模板,可将逆转录温度提高到60

3) 可将逆转录时间延长到45-60min,有助于提高产量;

485℃加热5 min,目的是使逆转录酶失活。

逆转录产物可立即用于后续PCRqPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

HB220801

 

第三代耐热逆转录酶Hifair® Ⅲ Reverse Transcriptase

暂无内容

第三代耐热逆转录酶Hifair® Ⅲ Reverse Transcriptase

暂无内容

Hifair® Ⅲ Reverse Transcriptase是在Hifair® Ⅱ Reverse Transcriptase基础上通过基因工程技术得到的新一代逆转录酶,与Hifair® Ⅱ Reverse Transcriptase相比,其cDNA合成速度快,且热稳定性大幅度提高,可耐受高达60的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录。Hifair® Ⅲ Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达19.8 kbcDNA

产品组分
 

组分编号

组分名称

产品编号/规格

14601ES03

14601ES10 

14601ES76 

14601-A

Hifair® Ⅲ Reverse Transcriptase (800 U/μL)

1 mL

10 mL

500 mL

产品应用

全长cDNA文库构建;终点法PCR;实时定量PCR等。

活性定义

Poly(A) .Oligo(dT)为模板引物,在37℃10 min内,将1 nmoldTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

运输与保存方法

冰袋运输。-20℃保存,有效期1年。

注意事项

1)请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染

2)所有操作均应在冰上进行,防止RNA降解

3)为保证高效率逆转录,建议使用高质量的RNA样本

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅作科研用途!

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNasefree H2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)  

or Gene Specific Primers (2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 10 pg -5 μgmRNA:10 pg-500 ng

65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后加入下表中的逆转录反应液,并用移液器轻轻吹打混匀。

2. 逆转录反应体系配制(20 μL体系)

组分

使用量

上一步的反应液

13 μL

5×Hifair® Ⅲ Buffer (Cat#15662)

4 μL

dNTP Mix (10 mM)

1 μL

Hifair® Ⅲ Reverse Transcriptase (800 U/μL)

200 U

RNase inhibitor (40 U/µL)

1 μL

3. 逆转录程序设置

温度

时间

25℃

5 min

55

1530 min

85℃

5 min

】:1)当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18Gene Specific Primers,此步可省略;

2)逆转录温度:推荐使用55;对于GC含量模板或者复杂模板,可将逆转录温度提高到60

3) 可将逆转录时间延长到45-60min,有助于提高产量;

485℃加热5 min,目的是使逆转录酶失活。

逆转录产物可立即用于后续PCRqPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

HB220801

 

第三代耐热逆转录酶Hifair® Ⅲ Reverse Transcriptase

暂无内容

第三代耐热逆转录酶Hifair® Ⅲ Reverse Transcriptase

暂无内容

第五代逆转录酶(Hifair UCF.ME® V Reverse Transcriptase(200U/μL))

第五代逆转录酶(Hifair UCF.ME® V Reverse Transcriptase(200U/μL))

产品说明书

FAQ

COA

已发表文献

 

Hifair UCF.ME ® V Reverse Transcriptase是在Hieff® M-MLV (H-) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H-) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair UCF.ME® V Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。此外,该酶经过特殊工艺处理,在保证性能的基础上,极大程度上降低宿主及背景菌干扰,特别适用于病原检测等场景。

 

组分信息

组分编号

组分名称

14608ES92

14608ES97

14608ES03

14608-A

Hifair UCF.ME® V Reverse Transcriptase (200 U/μL)

50 μL

250 μL

1 mL

14608-B

5×Hifair® V Buffer

250 μL

1.25 mL

5 mL

 

储存条件

-25~-15℃保存,有效期2年。

 

注意事项

1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。

2. 所有操作均应在冰上进行,防止RNA降解。

3. 为保证高效率逆转录,建议使用高质量的RNA样本

4. 本产品仅用作科研用途。

5. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

Ver.CN20230321

第五代逆转录酶(Hifair UCF.ME® V Reverse Transcriptase(200U/μL))

暂无内容

第五代逆转录酶(Hifair UCF.ME® V Reverse Transcriptase(200U/μL))

暂无内容

 

Hifair UCF.ME ® V Reverse Transcriptase是在Hieff® M-MLV (H-) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H-) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair UCF.ME® V Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。此外,该酶经过特殊工艺处理,在保证性能的基础上,极大程度上降低宿主及背景菌干扰,特别适用于病原检测等场景。

 

组分信息

组分编号

组分名称

14608ES92

14608ES97

14608ES03

14608-A

Hifair UCF.ME® V Reverse Transcriptase (200 U/μL)

50 μL

250 μL

1 mL

14608-B

5×Hifair® V Buffer

250 μL

1.25 mL

5 mL

 

储存条件

-25~-15℃保存,有效期2年。

 

注意事项

1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。

2. 所有操作均应在冰上进行,防止RNA降解。

3. 为保证高效率逆转录,建议使用高质量的RNA样本

4. 本产品仅用作科研用途。

5. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

Ver.CN20230321

第五代逆转录酶(Hifair UCF.ME® V Reverse Transcriptase(200U/μL))

暂无内容

第五代逆转录酶(Hifair UCF.ME® V Reverse Transcriptase(200U/μL))

暂无内容

Hifair® Ⅲ一步法反转绿色荧光定量试剂盒|Hifair® Ⅲ One Step RT-qPCR SYBR Green Kit

Hifair® Ⅲ一步法反转绿色荧光定量试剂盒|Hifair® Ⅲ One Step RT-qPCR SYBR Green Kit

产品说明书

FAQ

COA

已发表文献

Hifair® Ⅲ One Step RT-qPCR SYBR Green Kit是以RNA为模板进行定量PCR反应的试剂盒。在实验的过程中,逆转录和定量PCR在同一反应管中进行,简化了实验操作,降低了污染的风险。本试剂盒以RNA为模板,使用基因特异性引物,利用耐热Hifair® Ⅲ Reverse Transcriptase高效合成第一链cDNA,并以此为模板在UNICON® HotStart Taq DNA Polymerase作用下,配合优化的缓冲体系能够特异灵敏的对RNA模板进行精确定量。同时Buffer中额外添加了有效抑制非特异性PCR扩增的组分和提高扩增能力的促进因子,使定量PCR结果可以在宽广范围内更加真实有效。

本试剂盒以Kit形式提供,2×Hifair® Ⅲ SG buffer包含优化的缓冲体系和dNTPs等,优化了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,适用于SYBR Green标记的高特异性检测系统。此外,Hifair® UH Ⅲ Enzymes包含比例优化的Hifair® Ⅲ Reverse Transcriptase、RNase inhibitor及UNICON® HotStart Taq DNA Polymerase等。

 

产品信息

货号

11143ES50 / 11143ES70 / 11143ES80

规格

50 T / 200 T / 500 T

 

组分信息

组分编号

组分名称

11143ES50

11143ES70

11143ES80

11143-A

2×Hifair® Ⅲ SG buffer*

500 μL

4×500 μL

5 mL

11143-B

Hifair® UH Ⅲ Enzymes

50 μL

200 μL

500 μL

11143-C

Hieff® 50×High Rox

50 μL

200 μL

500 μL

11143-D

Hieff® 50×Low Rox

50 μL

200 μL

500 μL

11143-E

RNase-free ddH2O

500 μL

4×500 μL

5 mL

*SG buffer为SYBR Green buffer的简写,UH为UNICON-Hifair的简写。

 

储存条件

-25~-15℃避光储存,有效期1年。本品避免反复冻融。建议分装保存。

 

使用说明

组分

体积 μL

终浓度

2×Hifair® Ⅲ SG buffer

10

Hifair® UH Ⅲ Enzymes

1

Hieff® 50×High Rox or Low Roxb

0.4

Forward Primer (10 μmol/L)

0.4

0.2 μmol/La

Reverse Primer (10 μmol/L)

0.4

0.2 μmol/La

模板 RNAc

Total RNA 1 pg-1 μg

RNase-free ddH2O

to 20d

1反应体系(以20 μL为例)**

**使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a. 引物浓度:通常引物终浓度为0.2 μmol/L,也可以根据情况在0.1-1.0 μmol/L之间进行调整。

b. 参比染料:Rox的添加,可根据不同仪器型号进行选择,具体可参考【适用机型】。

c. 模板稀释:qPCR灵敏度极高,建议将模板进行稀释使用,控制CT值在20-30之间适宜。

d. 反应体系:推荐使用20 μL或50 μL,以保证目的基因扩增的有效性和重复性。

e. 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染

 

循环步骤

温度

时间

循环数

逆转录

42℃b

10 mina

1

预变性

95℃

5 min

1

扩增反应

95℃

Hifair® Ⅲ一步法反转绿色荧光定量试剂盒|Hifair® Ⅲ One Step RT-qPCR SYBR Green Kit10 sec

40

60℃

30 sec

熔解曲线d

仪器默认设置

1

2 标准扩增程序***

***针对实验需求可做适当调整。

a. 逆转录:对于一些极低丰度的基因可以将逆转录时间适当延长至15 min。

b. 温度:对于含复杂二级结构或高GC含量的RNA模板,可将逆转录温度提高到55℃,有助于提升灵敏度。

c. 荧光信号采集:不同的qPCR检测仪器所需的荧光信号采集时间不同,请根据最短时间限制进行设置。

d. 熔解曲线:通常情况下可以使用仪器默认程序。

 

适用机型

High Rox适用机型: ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus;

Low Rox适用机型: ABI 7500, 7500 Fast, ViiA7, QuantStudio 3 and 5, QuantStudio 6, 7, 12k Flex;

     Stratagene MX3000P, MX3005P, MX4000P;

不需要Rox校正的仪器型号:

Bio-Rad: CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf: Mastercycler ep realplex, realplex 2 s;

Qiagen: Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science: LightCycler 480, LightCycler2.0, Lightcycler 96;

Thermo Scientific: PikoReal Cycler; Cepheid: SmartCycler; Illumina: Eco qPCR.

 

注意事项

  1. 实验过程中请使用RNase-free耗材。
  2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
  3. 本产品仅作科研用途!

 

Ver.CN20230404

Q:产品的应用领域和特点是什么?

A:应用于病毒检测,特点是高检出率

[1] Dong W, Zhu Y, Chang H, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature. 2021;589(7843):586-590. doi:10.1038/s41586-020-3016-z(IF:42.779)
[2] Zheng Z, Li G, Cui C, et al. Preventing autosomal-dominant hearing loss in Bth mice with CRISPR/CasRx-based RNA editing. Signal Transduct Target Ther. 2022;7(1):79. Published 2022 Mar 14. doi:10.1038/s41392-022-00893-4(IF:18.187)
[3] Qiu J, Fan Q, Xu S, et al. A fluorinated peptide with high serum- and lipid-tolerence for the delivery of siRNA drugs to treat obesity and metabolic dysfunction. Biomaterials. 2022;285:121541. doi:10.1016/j.biomaterials.2022.121541(IF:12.479)
[4] Wang C, Li X, Ning W, et al. Multi-omic profiling of plasma reveals molecular alterations in children with COVID-19. Theranostics. 2021;11(16):8008-8026. Published 2021 Jul 6. doi:10.7150/thno.61832(IF:11.556)
[5] Bi G, Liang J, Zhao M, et al. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther Nucleic Acids. 2022;28:366-386. Published 2022 Mar 28. doi:10.1016/j.omtn.2022.03.020(IF:8.886)
[6] Hu W, Wang Z, Zhang H, et al. Chk1 Inhibition Ameliorates Alzheimer's Disease Pathogenesis and Cognitive Dysfunction Through CIP2A/PP2A Signaling. Neurotherapeutics. 2022;19(2):570-591. doi:10.1007/s13311-022-01204-z(IF:7.620)
[7] Wen J, Song J, Bai Y, et al. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front Cell Dev Biol. 2021;9:720858. Published 2021 Aug 6. doi:10.3389/fcell.2021.720858(IF:6.684)
[8] Shen T, Lyu D, Zhang M, Shang H, Lu Q. Dioscin Alleviates Cardiac Dysfunction in Acute Myocardial Infarction via Rescuing Mitochondrial Malfunction. Front Cardiovasc Med. 2022;9:783426. Published 2022 Mar 4. doi:10.3389/fcvm.2022.783426(IF:6.050)
[9] Zhang HM, Qi FF, Wang J, et al. The m6A Methyltransferase METTL3-Mediated N6-Methyladenosine Modification of DEK mRNA to Promote Gastric Cancer Cell Growth and Metastasis. Int J Mol Sci. 2022;23(12):6451. Published 2022 Jun 9. doi:10.3390/ijms23126451(IF:5.924)
[10] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[11] Jin M, Cao B, Lin C, et al. Tianma Gouteng Decoction Exerts Pregnancy-Protective Effects Against Preeclampsia via Regulation of Oxidative Stress and NO Signaling. Front Pharmacol. 2022;13:849074. Published 2022 Mar 21. doi:10.3389/fphar.2022.849074(IF:5.811)
[12] Li Z, Wang F, Liu Y, et al. Coumarin Derivative N6 as a Novel anti-hantavirus Infection Agent Targeting AKT. Front Pharmacol. 2021;12:745646. Published 2021 Dec 6. doi:10.3389/fphar.2021.745646(IF:5.811)
[13] Pan R, Lu Q, Ren C, et al. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging (Albany NY). 2021;13(13):17316-17327. doi:10.18632/aging.203212(IF:5.682)
[14] Qiu J, Zhang Z, Wang S, et al. Transferrin Receptor Functionally Marks Thermogenic Adipocytes. Front Cell Dev Biol. 2020;8:572459. Published 2020 Nov 5. doi:10.3389/fcell.2020.572459(IF:5.186)
[15] Deng LD, Qi L, Suo Q, et al. Transcranial focused ultrasound stimulation reduces vasogenic edema after middle cerebral artery occlusion in mice. Neural Regen Res. 2022;17(9):2058-2063. doi:10.4103/1673-5374.335158(IF:5.135)
[16] Ou J, Zhou Z, Dai R, et al. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity. J Virol. 2021;95(16):e0061721. doi:10.1128/JVI.00617-21(IF:5.103)
[17] Wu J, Wang Y, Zhou Y, et al. PPARγ as an E3 Ubiquitin-Ligase Impedes Phosphate-Stat6 Stability and Promotes Prostaglandins E2-Mediated Inhibition of IgE Production in Asthma. Front Immunol. 2020;11:1224. Published 2020 Jun 19. doi:10.3389/fimmu.2020.01224(IF:5.085)
[18] Wang J, Ren D, Sun Y, et al. Inhibition of PLK4 might enhance the anti-tumour effect of bortezomib on glioblastoma via PTEN/PI3K/AKT/mTOR signalling pathway. J Cell Mol Med. 2020;24(7):3931-3947. doi:10.1111/jcmm.14996(IF:4.486)
[19] Ge L, Zhang Y, Zhao X, et al. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol. 2021;132:132-141. doi:10.1016/j.molimm.2021.01.030(IF:4.407)
[20] Tang L, Wang F, Xiao L, et al. Yi-Qi-Jian-Pi formula modulates the PI3K/AKT signaling pathway to attenuate acute-on-chronic liver failure by suppressing hypoxic injury and apoptosis in vivo and in vitro. J Ethnopharmacol. 2021;280:114411. doi:10.1016/j.jep.2021.114411(IF:4.360)
[21] Wang K, Lv Q, Miao YM, Qiao SM, Dai Y, Wei ZF. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem Pharmacol. 2018;155:494-509. doi:10.1016/j.bcp.2018.07.039(IF:4.235)
[22] Chen Y, Miao J, Lou G. Knockdown of circ-FURIN suppresses the proliferation and induces apoptosis of granular cells in polycystic ovary syndrome via miR-195-5p/BCL2 axis. J Ovarian Res. 2021;14(1):156. Published 2021 Nov 16. doi:10.1186/s13048-021-00891-0(IF:4.234)
[23] Lin F, Xu L, Yuan R, et al. Identification of inflammatory response and alternative splicing in acute kidney injury and experimental verification of the involvement of RNA‑binding protein RBFOX1 in this disease. Int J Mol Med. 2022;49(3):32. doi:10.3892/ijmm.2022.5087(IF:4.101)
[24] Luo J, Liu H, Li DKJ, Song B, Zhang Y. Repression of the expression of proinflammatory genes by mitochondrial transcription factor A is linked to its alternative splicing regulation in human lung epithelial cells. BMC Immunol. 2021;22(1):74. Published 2021 Dec 7. doi:10.1186/s12865-021-00464-2(IF:3.615)
[25] Xu ZX, Li JZ, Li Q, Xu MY, Li HY. CircRNA608-microRNA222-PINK1 axis regulates the mitophagy of hepatic stellate cells in NASH related fibrosis. Biochem Biophys Res Commun. 2022;610:35-42. doi:10.1016/j.bbrc.2022.04.008(IF:3.575)
[26] Li Y, Qiao D, Zhang Y, et al. MapZ deficiency leads to defects in the envelope structure and changes stress tolerance of Streptococcus mutans. Mol Oral Microbiol. 2021;36(6):295-307. doi:10.1111/omi.12352(IF:3.563)
[27] Huang L, Cai HA, Zhang MS, Liao RY, Huang X, Hu FD. Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis [published correction appears in J Pharmacol Sci. 2022 Jul;149(3):173]. J Pharmacol Sci. 2021;147(3):271-283. doi:10.1016/j.jphs.2021.07.008(IF:3.337)
[28] Ban D, Yu P, Xiang Z, Liu Y. TNF-like weak inducer of apoptosis / nuclear factor κB axis feedback loop promotes spinal cord injury by inducing astrocyte activation. Bioengineered. 2022;13(5):11503-11516. doi:10.1080/21655979.2022.2068737(IF:3.269)
[29] Liu Z, Li J, Hu X, Xu H. Helicobacter pylori-induced protein tyrosine phosphatase receptor type C as a prognostic biomarker for gastric cancer. J Gastrointest Oncol. 2021;12(3):1058-1073. doi:10.21037/jgo-21-305(IF:2.892)
[30] Wang K, Li L, Jin J, et al. Fatty acid synthase (Fasn) inhibits the expression levels of immune response genes via alteration of alternative splicing in islet cells. J Diabetes Complications. 2022;36(6):108159. doi:10.1016/j.jdiacomp.2022.108159(IF:2.852)
[31] Hu Q, Lan J, Liang W, et al. MMP7 damages the integrity of the renal tubule epithelium by activating MMP2/9 during ischemia-reperfusion injury. J Mol Histol. 2020;51(6):685-700. doi:10.1007/s10735-020-09914-4(IF:2.531)
[32] Li J, Xu S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson's disease. Exp Ther Med. 2022;23(4):293. doi:10.3892/etm.2022.11223(IF:2.447)
[33] Hao P, Kang B, Li Y, Hao W, Ma F. UBE2T promotes proliferation and regulates PI3K/Akt signaling in renal cell carcinoma. Mol Med Rep. 2019;20(2):1212-1220. doi:10.3892/mmr.2019.10322(IF:1.851)

Hifair® Ⅲ One Step RT-qPCR SYBR Green Kit是以RNA为模板进行定量PCR反应的试剂盒。在实验的过程中,逆转录和定量PCR在同一反应管中进行,简化了实验操作,降低了污染的风险。本试剂盒以RNA为模板,使用基因特异性引物,利用耐热Hifair® Ⅲ Reverse Transcriptase高效合成第一链cDNA,并以此为模板在UNICON® HotStart Taq DNA Polymerase作用下,配合优化的缓冲体系能够特异灵敏的对RNA模板进行精确定量。同时Buffer中额外添加了有效抑制非特异性PCR扩增的组分和提高扩增能力的促进因子,使定量PCR结果可以在宽广范围内更加真实有效。

本试剂盒以Kit形式提供,2×Hifair® Ⅲ SG buffer包含优化的缓冲体系和dNTPs等,优化了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,适用于SYBR Green标记的高特异性检测系统。此外,Hifair® UH Ⅲ Enzymes包含比例优化的Hifair® Ⅲ Reverse Transcriptase、RNase inhibitor及UNICON® HotStart Taq DNA Polymerase等。

 

产品信息

货号

11143ES50 / 11143ES70 / 11143ES80

规格

50 T / 200 T / 500 T

 

组分信息

组分编号

组分名称

11143ES50

11143ES70

11143ES80

11143-A

2×Hifair® Ⅲ SG buffer*

500 μL

4×500 μL

5 mL

11143-B

Hifair® UH Ⅲ Enzymes

50 μL

200 μL

500 μL

11143-C

Hieff® 50×High Rox

50 μL

200 μL

500 μL

11143-D

Hieff® 50×Low Rox

50 μL

200 μL

500 μL

11143-E

RNase-free ddH2O

500 μL

4×500 μL

5 mL

*SG buffer为SYBR Green buffer的简写,UH为UNICON-Hifair的简写。

 

储存条件

-25~-15℃避光储存,有效期1年。本品避免反复冻融。建议分装保存。

 

使用说明

组分

体积 μL

终浓度

2×Hifair® Ⅲ SG buffer

10

Hifair® UH Ⅲ Enzymes

1

Hieff® 50×High Rox or Low Roxb

0.4

Forward Primer (10 μmol/L)

0.4

0.2 μmol/La

Reverse Primer (10 μmol/L)

0.4

0.2 μmol/La

模板 RNAc

Total RNA 1 pg-1 μg

RNase-free ddH2O

to 20d

1反应体系(以20 μL为例)**

**使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a. 引物浓度:通常引物终浓度为0.2 μmol/L,也可以根据情况在0.1-1.0 μmol/L之间进行调整。

b. 参比染料:Rox的添加,可根据不同仪器型号进行选择,具体可参考【适用机型】。

c. 模板稀释:qPCR灵敏度极高,建议将模板进行稀释使用,控制CT值在20-30之间适宜。

d. 反应体系:推荐使用20 μL或50 μL,以保证目的基因扩增的有效性和重复性。

e. 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染

 

循环步骤

温度

时间

循环数

逆转录

42℃b

10 mina

1

预变性

95℃

5 min

1

扩增反应

95℃

Hifair® Ⅲ一步法反转绿色荧光定量试剂盒|Hifair® Ⅲ One Step RT-qPCR SYBR Green Kit10 sec

40

60℃

30 sec

熔解曲线d

仪器默认设置

1

2 标准扩增程序***

***针对实验需求可做适当调整。

a. 逆转录:对于一些极低丰度的基因可以将逆转录时间适当延长至15 min。

b. 温度:对于含复杂二级结构或高GC含量的RNA模板,可将逆转录温度提高到55℃,有助于提升灵敏度。

c. 荧光信号采集:不同的qPCR检测仪器所需的荧光信号采集时间不同,请根据最短时间限制进行设置。

d. 熔解曲线:通常情况下可以使用仪器默认程序。

 

适用机型

High Rox适用机型: ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus;

Low Rox适用机型: ABI 7500, 7500 Fast, ViiA7, QuantStudio 3 and 5, QuantStudio 6, 7, 12k Flex;

     Stratagene MX3000P, MX3005P, MX4000P;

不需要Rox校正的仪器型号:

Bio-Rad: CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf: Mastercycler ep realplex, realplex 2 s;

Qiagen: Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science: LightCycler 480, LightCycler2.0, Lightcycler 96;

Thermo Scientific: PikoReal Cycler; Cepheid: SmartCycler; Illumina: Eco qPCR.

 

注意事项

  1. 实验过程中请使用RNase-free耗材。
  2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
  3. 本产品仅作科研用途!

 

Ver.CN20230404

Q:产品的应用领域和特点是什么?

A:应用于病毒检测,特点是高检出率

[1] Dong W, Zhu Y, Chang H, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature. 2021;589(7843):586-590. doi:10.1038/s41586-020-3016-z(IF:42.779)
[2] Zheng Z, Li G, Cui C, et al. Preventing autosomal-dominant hearing loss in Bth mice with CRISPR/CasRx-based RNA editing. Signal Transduct Target Ther. 2022;7(1):79. Published 2022 Mar 14. doi:10.1038/s41392-022-00893-4(IF:18.187)
[3] Qiu J, Fan Q, Xu S, et al. A fluorinated peptide with high serum- and lipid-tolerence for the delivery of siRNA drugs to treat obesity and metabolic dysfunction. Biomaterials. 2022;285:121541. doi:10.1016/j.biomaterials.2022.121541(IF:12.479)
[4] Wang C, Li X, Ning W, et al. Multi-omic profiling of plasma reveals molecular alterations in children with COVID-19. Theranostics. 2021;11(16):8008-8026. Published 2021 Jul 6. doi:10.7150/thno.61832(IF:11.556)
[5] Bi G, Liang J, Zhao M, et al. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther Nucleic Acids. 2022;28:366-386. Published 2022 Mar 28. doi:10.1016/j.omtn.2022.03.020(IF:8.886)
[6] Hu W, Wang Z, Zhang H, et al. Chk1 Inhibition Ameliorates Alzheimer's Disease Pathogenesis and Cognitive Dysfunction Through CIP2A/PP2A Signaling. Neurotherapeutics. 2022;19(2):570-591. doi:10.1007/s13311-022-01204-z(IF:7.620)
[7] Wen J, Song J, Bai Y, et al. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front Cell Dev Biol. 2021;9:720858. Published 2021 Aug 6. doi:10.3389/fcell.2021.720858(IF:6.684)
[8] Shen T, Lyu D, Zhang M, Shang H, Lu Q. Dioscin Alleviates Cardiac Dysfunction in Acute Myocardial Infarction via Rescuing Mitochondrial Malfunction. Front Cardiovasc Med. 2022;9:783426. Published 2022 Mar 4. doi:10.3389/fcvm.2022.783426(IF:6.050)
[9] Zhang HM, Qi FF, Wang J, et al. The m6A Methyltransferase METTL3-Mediated N6-Methyladenosine Modification of DEK mRNA to Promote Gastric Cancer Cell Growth and Metastasis. Int J Mol Sci. 2022;23(12):6451. Published 2022 Jun 9. doi:10.3390/ijms23126451(IF:5.924)
[10] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[11] Jin M, Cao B, Lin C, et al. Tianma Gouteng Decoction Exerts Pregnancy-Protective Effects Against Preeclampsia via Regulation of Oxidative Stress and NO Signaling. Front Pharmacol. 2022;13:849074. Published 2022 Mar 21. doi:10.3389/fphar.2022.849074(IF:5.811)
[12] Li Z, Wang F, Liu Y, et al. Coumarin Derivative N6 as a Novel anti-hantavirus Infection Agent Targeting AKT. Front Pharmacol. 2021;12:745646. Published 2021 Dec 6. doi:10.3389/fphar.2021.745646(IF:5.811)
[13] Pan R, Lu Q, Ren C, et al. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging (Albany NY). 2021;13(13):17316-17327. doi:10.18632/aging.203212(IF:5.682)
[14] Qiu J, Zhang Z, Wang S, et al. Transferrin Receptor Functionally Marks Thermogenic Adipocytes. Front Cell Dev Biol. 2020;8:572459. Published 2020 Nov 5. doi:10.3389/fcell.2020.572459(IF:5.186)
[15] Deng LD, Qi L, Suo Q, et al. Transcranial focused ultrasound stimulation reduces vasogenic edema after middle cerebral artery occlusion in mice. Neural Regen Res. 2022;17(9):2058-2063. doi:10.4103/1673-5374.335158(IF:5.135)
[16] Ou J, Zhou Z, Dai R, et al. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity. J Virol. 2021;95(16):e0061721. doi:10.1128/JVI.00617-21(IF:5.103)
[17] Wu J, Wang Y, Zhou Y, et al. PPARγ as an E3 Ubiquitin-Ligase Impedes Phosphate-Stat6 Stability and Promotes Prostaglandins E2-Mediated Inhibition of IgE Production in Asthma. Front Immunol. 2020;11:1224. Published 2020 Jun 19. doi:10.3389/fimmu.2020.01224(IF:5.085)
[18] Wang J, Ren D, Sun Y, et al. Inhibition of PLK4 might enhance the anti-tumour effect of bortezomib on glioblastoma via PTEN/PI3K/AKT/mTOR signalling pathway. J Cell Mol Med. 2020;24(7):3931-3947. doi:10.1111/jcmm.14996(IF:4.486)
[19] Ge L, Zhang Y, Zhao X, et al. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol. 2021;132:132-141. doi:10.1016/j.molimm.2021.01.030(IF:4.407)
[20] Tang L, Wang F, Xiao L, et al. Yi-Qi-Jian-Pi formula modulates the PI3K/AKT signaling pathway to attenuate acute-on-chronic liver failure by suppressing hypoxic injury and apoptosis in vivo and in vitro. J Ethnopharmacol. 2021;280:114411. doi:10.1016/j.jep.2021.114411(IF:4.360)
[21] Wang K, Lv Q, Miao YM, Qiao SM, Dai Y, Wei ZF. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem Pharmacol. 2018;155:494-509. doi:10.1016/j.bcp.2018.07.039(IF:4.235)
[22] Chen Y, Miao J, Lou G. Knockdown of circ-FURIN suppresses the proliferation and induces apoptosis of granular cells in polycystic ovary syndrome via miR-195-5p/BCL2 axis. J Ovarian Res. 2021;14(1):156. Published 2021 Nov 16. doi:10.1186/s13048-021-00891-0(IF:4.234)
[23] Lin F, Xu L, Yuan R, et al. Identification of inflammatory response and alternative splicing in acute kidney injury and experimental verification of the involvement of RNA‑binding protein RBFOX1 in this disease. Int J Mol Med. 2022;49(3):32. doi:10.3892/ijmm.2022.5087(IF:4.101)
[24] Luo J, Liu H, Li DKJ, Song B, Zhang Y. Repression of the expression of proinflammatory genes by mitochondrial transcription factor A is linked to its alternative splicing regulation in human lung epithelial cells. BMC Immunol. 2021;22(1):74. Published 2021 Dec 7. doi:10.1186/s12865-021-00464-2(IF:3.615)
[25] Xu ZX, Li JZ, Li Q, Xu MY, Li HY. CircRNA608-microRNA222-PINK1 axis regulates the mitophagy of hepatic stellate cells in NASH related fibrosis. Biochem Biophys Res Commun. 2022;610:35-42. doi:10.1016/j.bbrc.2022.04.008(IF:3.575)
[26] Li Y, Qiao D, Zhang Y, et al. MapZ deficiency leads to defects in the envelope structure and changes stress tolerance of Streptococcus mutans. Mol Oral Microbiol. 2021;36(6):295-307. doi:10.1111/omi.12352(IF:3.563)
[27] Huang L, Cai HA, Zhang MS, Liao RY, Huang X, Hu FD. Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis [published correction appears in J Pharmacol Sci. 2022 Jul;149(3):173]. J Pharmacol Sci. 2021;147(3):271-283. doi:10.1016/j.jphs.2021.07.008(IF:3.337)
[28] Ban D, Yu P, Xiang Z, Liu Y. TNF-like weak inducer of apoptosis / nuclear factor κB axis feedback loop promotes spinal cord injury by inducing astrocyte activation. Bioengineered. 2022;13(5):11503-11516. doi:10.1080/21655979.2022.2068737(IF:3.269)
[29] Liu Z, Li J, Hu X, Xu H. Helicobacter pylori-induced protein tyrosine phosphatase receptor type C as a prognostic biomarker for gastric cancer. J Gastrointest Oncol. 2021;12(3):1058-1073. doi:10.21037/jgo-21-305(IF:2.892)
[30] Wang K, Li L, Jin J, et al. Fatty acid synthase (Fasn) inhibits the expression levels of immune response genes via alteration of alternative splicing in islet cells. J Diabetes Complications. 2022;36(6):108159. doi:10.1016/j.jdiacomp.2022.108159(IF:2.852)
[31] Hu Q, Lan J, Liang W, et al. MMP7 damages the integrity of the renal tubule epithelium by activating MMP2/9 during ischemia-reperfusion injury. J Mol Histol. 2020;51(6):685-700. doi:10.1007/s10735-020-09914-4(IF:2.531)
[32] Li J, Xu S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson's disease. Exp Ther Med. 2022;23(4):293. doi:10.3892/etm.2022.11223(IF:2.447)
[33] Hao P, Kang B, Li Y, Hao W, Ma F. UBE2T promotes proliferation and regulates PI3K/Akt signaling in renal cell carcinoma. Mol Med Rep. 2019;20(2):1212-1220. doi:10.3892/mmr.2019.10322(IF:1.851)

Hifair® Ⅲ第1链cDNA合成即用型预混液|Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix

Hifair® Ⅲ第1链cDNA合成即用型预混液|Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix

产品说明书

FAQ

COA

已发表文献

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix基于Hifair® Ⅲ Reverse Transcriptase而开发的即用型预混液。与Hifair® Ⅱ Reverse Transcriptase相比,Hifair® Ⅲ Reverse Transcriptase热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录。

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅲ Reverse Transcriptase,RNase inhibitor,dNTP,Random primers/Oligo dT primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free ddH2O即可进行反应。

产品组分

组分编号

组分名称

产品编号/规格

11137ES10 (10 T)

11137ES60 (100 T)

11137-A

RNase-free H2O

1 mL

2×1 mL

11137-B

4×Hifair® Ⅲ SuperMix

50 μL

500 μL

 

产品应用

适用于 RT-qPCR 实验。

 

运输和保存方法

冰袋运输。-20ºC保存,有效期18个月。

 

第一链 cDNA 合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase-free H2O

To 20 μL

25℃

5 min

4×Hifair® Ⅲ SuperMix

5 μL

55℃

15 min

Total RNA

10 pg -5 μg

85℃

5 min

or mRNA

10 pg-500 ng

   

【注】:1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA;

2. 逆转录温度:推荐使用55℃。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60℃。

※ 逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

 

注意事项

1.可以室温溶解,溶解后宜存放于冰盒内或冰浴上,使用完毕后应立即置于-20℃保存。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅作科研用途! 

HB220308

 

Q:逆转录试剂 11137ES 中引物是随机引物还是oligo dT,还是二者的混合物?

A:二者的混合物。

Q:能否用来做miRNA/circRNA/lncRNA 的逆转录?

A:有A 尾的 lncRNA 可以逆转录, circRNA miRNA 和无 A 尾的 lncRNA 用 不能进行逆转录。microRNA 需要特殊的茎环引物, 需特别针对的逆转录试剂盒。

Q:11137 可以逆转真菌(或其他物种)RNA 吗?

A:RNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后,逆转录试剂盒都可以用,没有特别针对的。

[1] Hu X, Pang J, Zhang J, et al. Discovery of Novel GR Ligands toward Druggable GR Antagonist Conformations Identified by MD Simulations and Markov State Model Analysis. Adv Sci (Weinh). 2022;9(3):e2102435. doi:10.1002/advs.202102435(IF:16.806)
[2] Zhong Z, Wu X, Wang Y, et al. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater. 2021;10:195-206. Published 2021 Sep 16. doi:10.1016/j.bioactmat.2021.09.013(IF:14.593)
[3] Liu J, Qu M, Wang C, et al. A Dual-Cross-Linked Hydrogel Patch for Promoting Diabetic Wound Healing. Small. 2022;18(17):e2106172. doi:10.1002/smll.202106172(IF:13.281)
[4] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[5] Yuan H, Zhao L, Yuan Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics. 2021;11(17):8362-8378. Published 2021 Jul 25. doi:10.7150/thno.57531(IF:11.556)
[6] Kong D, Pan X, Jing Y, et al. ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf. New Phytol. 2021;230(4):1533-1549. doi:10.1111/nph.17293(IF:10.152)
[7] Mao S, Wang B, Yue L, Xia W. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym. 2021;262:117972. doi:10.1016/j.carbpol.2021.117972(IF:9.381)
[8] Wang S, Li Y, Zhong L, et al. Efficient gene editing through an intronic selection marker in cells. Cell Mol Life Sci. 2022;79(2):111. Published 2022 Jan 31. doi:10.1007/s00018-022-04152-1(IF:9.261)
[9] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[10] Wang X, Hu Y, He W, et al. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation [published online ahead of print, 2022 Jun 1]. Plant Commun. 2022;100345. doi:10.1016/j.xplc.2022.100345(IF:8.625)
[11] Deng X, Ye D, Hua K, et al. MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor. Cell Death Dis. 2021;12(9):810. Published 2021 Aug 26. doi:10.1038/s41419-021-04105-9(IF:8.469)
[12] Wang Y, Xue T, Wang M, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens Actuators B Chem. 2022;362:131765. doi:10.1016/j.snb.2022.131765(IF:7.460)
[13] Fu W, Zhang M, Liao J, et al. Discovery of a Novel Androgen Receptor Antagonist Manifesting Evidence to Disrupt the Dimerization of the Ligand-Binding Domain via Attenuating the Hydrogen-Bonding Network Between the Two Monomers. J Med Chem. 2021;64(23):17221-17238. doi:10.1021/acs.jmedchem.1c01287(IF:7.446)
[14] Cen Y, Zou X, Zhong Q, et al. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radic Biol Med. 2022;184:17-29. doi:10.1016/j.freeradbiomed.2022.03.016(IF:7.376)
[15] Shi W, Ma Q, Yin W, et al. StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato [published online ahead of print, 2022 May 2]. J Exp Bot. 2022;erac171. doi:10.1093/jxb/erac171(IF:6.992)
[16] Zhang DW, Ye JJ, Sun Y, et al. CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis. J Inflamm Res. 2022;15:2491-2507. Published 2022 Apr 20. doi:10.2147/JIR.S355764(IF:6.922)
[17] Wang S, Huang J, Liu F, et al. Isosteviol Sodium Exerts Anti-Colitic Effects on BALB/c Mice with Dextran Sodium Sulfate-Induced Colitis Through Metabolic Reprogramming and Immune Response Modulation. J Inflamm Res. 2021;14:7107-7130. Published 2021 Dec 20. doi:10.2147/JIR.S344990(IF:6.922)
[18] Ma C, Zhang L, He T, et al. Single cell Raman spectroscopy to identify different stages of proliferating human hepatocytes for cell therapy. Stem Cell Res Ther. 2021;12(1):555. Published 2021 Oct 30. doi:10.1186/s13287-021-02619-9(IF:6.832)
[19] Jiang M, Tang T, Liang X, et al. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Prolif. 2021;54(6):e13042. doi:10.1111/cpr.13042(IF:6.831)
[20] Zhang Y, Li Y, Sun C, et al. Effect of Pterostilbene, a Natural Derivative of Resveratrol, in the Treatment of Colorectal Cancer through Top1/Tdp1-Mediated DNA Repair Pathway. Cancers (Basel). 2021;13(16):4002. Published 2021 Aug 9. doi:10.3390/cancers13164002(IF:6.639)
[21] Wang S, Huang J, Tan KS, Deng L, Liu F, Tan W. Isosteviol Sodium Ameliorates Dextran Sodium Sulfate-Induced Chronic Colitis through the Regulation of Metabolic Profiling, Macrophage Polarization, and NF-κB Pathway. Oxid Med Cell Longev. 2022;2022:4636618. Published 2022 Jan 27. doi:10.1155/2022/4636618(IF:6.543)
[22] Hu X, Pang J, Chen C, et al. Discovery of novel non-steroidal selective glucocorticoid receptor modulators by structure- and IGN-based virtual screening, structural optimization, and biological evaluation. Eur J Med Chem. 2022;237:114382. doi:10.1016/j.ejmech.2022.114382(IF:6.514)
[23] Jiao C, Zou J, Chen Z, et al. Dietary Glutamine Inclusion Regulates Immune and Antioxidant System, as Well as Programmed Cell Death in Fish to Protect against Flavobacterium columnare Infection. Antioxidants (Basel). 2021;11(1):44. Published 2021 Dec 26. doi:10.3390/antiox11010044(IF:6.313)
[24] Ma D, Wei J, Chen S, et al. Fucoidan Inhibits the Progression of Hepatocellular Carcinoma via Causing lncRNA LINC00261 Overexpression. Front Oncol. 2021;11:653902. Published 2021 Apr 13. doi:10.3389/fonc.2021.653902(IF:6.244)
[25] Zhao LN, Yuan HF, Wang YF, et al. IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin. 2022;43(6):1484-1494. doi:10.1038/s41401-021-00765-7(IF:6.150)
[26] Yuan HF, Zhao M, Zhao LN, et al. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours [published online ahead of print, 2022 Jan 19]. Acta Pharmacol Sin. 2022;10.1038/s41401-021-00841-y. doi:10.1038/s41401-021-00841-y(IF:6.150)
[27] Pang JP, Shen C, Zhou WF, et al. Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacol Sin. 2022;43(1):229-239. doi:10.1038/s41401-021-00632-5(IF:6.150)
[28] Pang JP, Hu XP, Wang YX, et al. Discovery of a novel nonsteroidal selective glucocorticoid receptor modulator by virtual screening and bioassays [published online ahead of print, 2022 Feb 2]. Acta Pharmacol Sin. 2022;1-10. doi:10.1038/s41401-021-00855-6(IF:6.150)
[29] Zi Z, Zhao H, Wang H, Ma X, Wei F. B7-H3 Chimeric Antigen Receptor Redirected T Cells Target Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel). 2020;12(12):3815. Published 2020 Dec 17. doi:10.3390/cancers12123815(IF:6.126)
[30] Yu X, Hu L, Li S, et al. Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis. 2019;10(4):280. Published 2019 Mar 25. doi:10.1038/s41419-019-1509-1(IF:5.959)
[31] Shi X, Ye C, Qin X, et al. Novel Pituitary Actions of TAC4 Gene Products in Teleost. Int J Mol Sci. 2021;22(23):12893. Published 2021 Nov 29. doi:10.3390/ijms222312893(IF:5.924)
[32] Yang N, Zhang X, Li L, et al. Ginsenoside Rc Promotes Bone Formation in Ovariectomy-Induced Osteoporosis In Vivo and Osteogenic Differentiation In Vitro. Int J Mol Sci. 2022;23(11):6187. Published 2022 May 31. doi:10.3390/ijms23116187(IF:5.924)
[33] Wang X, Li W, Jiang H, et al. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci. 2022;23(12):6442. Published 2022 Jun 9. doi:10.3390/ijms23126442(IF:5.924)
[34] Jiang R, Xu J, Zhang Y, Zhu X, Liu J, Tan Y. Ligustrazine Alleviate Acute Lung Injury Through Suppressing Pyroptosis and Apoptosis of Alveolar Macrophages. Front Pharmacol. 2021;12:680512. Published 2021 May 28. doi:10.3389/fphar.2021.680512(IF:5.811)
[35] Xie T, Chen X, Chen W, et al. Curcumin is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front Pharmacol. 2021;12:796565. Published 2021 Dec 10. doi:10.3389/fphar.2021.796565(IF:5.811)
[36] Sun L, Cao Y, Kong Q, et al. Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation. Genomics. 2021;113(5):2925-2933. doi:10.1016/j.ygeno.2021.06.028(IF:5.736)
[37] Xia C, Qin X, Zhou L, et al. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne). 2021;12:762826. Published 2021 Nov 3. doi:10.3389/fendo.2021.762826(IF:5.555)
[38] Yuan J, Wang JM, Li ZW, et al. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med. 2021;16(1):55. Published 2021 Jul 8. doi:10.1186/s13020-021-00465-8(IF:5.455)
[39] Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res. 2022;254:126912. doi:10.1016/j.micres.2021.126912(IF:5.415)
[40] Zhang X, Zhang B, Li L, Li X, Zhang J, Chen G. Fermented noni (Morinda citrifolia L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells [published online ahead of print, 2022 Jul 14]. Food Funct. 2022;10.1039/d2fo00595f. doi:10.1039/d2fo00595f(IF:5.396)
[41] Yu S, Liu S, Wang N, et al. Novel insights into antidepressant mechanism of Kai Xin San formula: Inhibiting NLRP3 inflammasome activation by promoting autophagy. Phytomedicine. 2021;93:153792. doi:10.1016/j.phymed.2021.153792(IF:5.340)
[42] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[43] Qi M, Zhu X, Yu X, et al. Preparation of W/O Hypaphorine-Chitosan Nanoparticles and Its Application on Promoting Chronic Wound Healing via Alleviating Inflammation Block. Nanomaterials (Basel). 2021;11(11):2830. Published 2021 Oct 25. doi:10.3390/nano11112830(IF:5.076)
[44] Zhang Y, Sun M, Jian S, et al. mPEG2k-PCLx Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm. 2021;18(7):2586-2599. doi:10.1021/acs.molpharmaceut.1c00078(IF:4.939)
[45] Hu R, Zhu X, Chen C, Xu R, Li Y, Xu W. RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs. Cell Prolif. 2018;51(6):e12508. doi:10.1111/cpr.12508(IF:4.936)
[46] Li Z, Wang Y, Hu R, Xu R, Xu W. LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity. Cell Prolif. 2018;51(6):e12504. doi:10.1111/cpr.12504(IF:4.936)
[47] Wang Y, Hu W, Deng Z, He X. Rapid identification of magnesium ascorbyl phosphate utilizing phosphatase through a chromogenic change-coupled activity assay. Appl Microbiol Biotechnol. 2021;105(7):2901-2909. doi:10.1007/s00253-021-11229-7(IF:4.813)
[48] Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol. 2022;13:855959. Published 2022 Apr 21. doi:10.3389/fphys.2022.855959(IF:4.566)
[49] Xu X, Liu W, Liu X, et al. Genetic manipulation of bermudagrass photosynthetic biosynthesis using Agrobacterium-mediated transformation. Physiol Plant. 2022;174(3):e13710. doi:10.1111/ppl.13710(IF:4.500)
[50] Wang Y, Zhu GQ, Tian D, et al. Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer. 2022;22(1):316. Published 2022 Mar 24. doi:10.1186/s12885-022-09377-8(IF:4.430)
[51] Yue L, Lin H, Yuan S, et al. miR-1251-5p Overexpression Inhibits Proliferation, Migration, and Immune Escape in Clear Cell Renal Cell Carcinoma by Targeting NPTX2. J Oncol. 2022;2022:3058588. Published 2022 Mar 10. doi:10.1155/2022/3058588(IF:4.375)
[52] Wang Y, Zhang J, Xu Z, et al. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma. J Ethnopharmacol. 2022;292:115179. doi:10.1016/j.jep.2022.115179(IF:4.360)
[53] Xiang B, Yang J, Zhang J, et al. The role of genes affected by human evolution marker GNA13 in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2020;98:109764. doi:10.1016/j.pnpbp.2019.109764(IF:4.315)
[54] Lei J, Zhang X, Tan R, Li Y, Zhao K, Niu H. Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med. 2022;11(12):3319. Published 2022 Jun 9. doi:10.3390/jcm11123319(IF:4.242)
[55] Ye W, Yao M, Dong Y, et al. Remdesivir (GS-5734) Impedes Enterovirus Replication Through Viral RNA Synthesis Inhibition [published correction appears in Front Microbiol. 2020 Nov 23;11:621197]. Front Microbiol. 2020;11:1105. Published 2020 Jun 12. doi:10.3389/fmicb.2020.01105(IF:4.236)
[56] Zhang Q, Wu JF, Shi QL, et al. The Neuronal Activation of Deep Cerebellar Nuclei Is Essential for Environmental Enrichment-Induced Post-Stroke Motor Recovery. Aging Dis. 2019;10(3):530-543. Published 2019 Jun 1. doi:10.14336/AD.2018.1220(IF:4.232)
[57] Lv N, Zhao M, Han Y, et al. The roles of bone morphogenetic protein 2 in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection. Toxicol Appl Pharmacol. 2018;352:68-76. doi:10.1016/j.taap.2018.05.028(IF:4.219)
[58] Su H, Liang J, Abou-Elwafa SF, et al. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biol. 2021;21(1):453. Published 2021 Oct 6. doi:10.1186/s12870-021-03231-y(IF:4.215)
[59] Shan N, Zhang Y, Xu Y, et al. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022;22(1):108. Published 2022 Mar 9. doi:10.1186/s12870-022-03498-9(IF:4.215)
[60] Hu Q, Xu S, Ye C, Jia J, Zhou L, Hu G. Novel Pituitary Actions of Epidermal Growth Factor: Receptor Specificity and Signal Transduction for UTS1, EGR1, and MMP13 Regulation by EGF. Int J Mol Sci. 2019;20(20):5172. Published 2019 Oct 18. doi:10.3390/ijms20205172(IF:4.183)
[61] Cui P, Lin Q, Fang D, et al. Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid β-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. Plant Cell Physiol. 2018;59(10):1990-2003. doi:10.1093/pcp/pcy117(IF:4.059)
[62] Wang Y, Li N, Tian D, et al. Analysis of m6A-Related lncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma. Cancer Manag Res. 2021;13:6451-6471. Published 2021 Aug 16. doi:10.2147/CMAR.S322179(IF:3.989)
[63] Xue J, Chen L, Cheng H, et al. The Identification and Validation of Hub Genes Associated with Acute Myocardial Infarction Using Weighted Gene Co-Expression Network Analysis. J Cardiovasc Dev Dis. 2022;9(1):30. Published 2022 Jan 17. doi:10.3390/jcdd9010030(IF:3.948)
[64] Hou J, Sun Y, Wang L, Jiang Y, Chen N, Tong S. Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in Populus trichocarpa. Plants (Basel). 2021;10(11):2284. Published 2021 Oct 25. doi:10.3390/plants10112284(IF:3.935)
[65] Wu J, Lu J, Huang J, et al. Variations in Energy Metabolism Precede Alterations in Cardiac Structure and Function in Hypertrophic Preconditioning. Front Cardiovasc Med. 2020;7:602100. Published 2020 Dec 11. doi:10.3389/fcvm.2020.602100(IF:3.915)
[66] Guo Q, Li Y, Chen Y, et al. β-Elemene induces apoptosis by activating the P53 pathway in human hypertrophic scar fibroblasts. IUBMB Life. 2022;74(6):508-518. doi:10.1002/iub.2614(IF:3.885)
[67] Jiang SJ, Xiao X, Zheng J, et al. Antibacterial and antibiofilm activities of novel antimicrobial peptide DP7 against the periodontal pathogen Porphyromonas gingivalis [published online ahead of print, 2022 May 14]. J Appl Microbiol. 2022;10.1111/jam.15614. doi:10.1111/jam.15614(IF:3.772)
[68] Zhang F, Teng Z, Wang L, Wang L, Huang T, Zhang X. Dietary Selenium Deficiency and Excess Accelerate Ubiquitin-Mediated Protein Degradation in the Muscle of Rainbow Trout (Oncorhynchus mykiss) via Akt/FoxO3a and NF-κB Signaling Pathways. Biol Trace Elem Res. 2022;200(3):1361-1375. doi:10.1007/s12011-021-02726-x(IF:3.738)
[69] YujiaLiu, Shi C, Zhang G, et al. Antimicrobial mechanism of 4-hydroxyphenylacetic acid on Listeria monocytogenes membrane and virulence. Biochem Biophys Res Commun. 2021;572:145-150. doi:10.1016/j.bbrc.2021.07.096(IF:3.575)
[70] Fu H, Zhang Z, Dai Y, Liu S, Fu E. Brequinar inhibits enterovirus replication by targeting biosynthesis pathway of pyrimidines. Am J Transl Res. 2020;12(12):8247-8255. Published 2020 Dec 25. (IF:3.375)
[71] Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered. 2022;13(1):1103-1114. doi:10.1080/21655979.2021.2017629(IF:3.269)
[72] Zhang Y, Zhang R, Lu L, et al. Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway. Bioengineered. 2022;13(4):8926-8936. doi:10.1080/21655979.2022.2056814(IF:3.269)
[73] Mei X, Din H, Zhao J, Tong J, Zhu W. Transcription factor Krüppel-like factor 5-regulated N-myc downstream-regulated gene 2 reduces IL-1β-induced chondrocyte inflammatory injury and extracellular matrix degradation. Bioengineered. 2021;12(1):7020-7032. doi:10.1080/21655979.2021.1971483(IF:3.269)
[74] Cao S, Li X, Feng T, et al. Hirudin promotes proliferation and osteogenic differentiation of HBMSCs via activation of cyclic guanosine monophosphate (cGMP)/protein kinase-G (PKG) signaling pathway. Bioengineered. 2022;13(3):6061-6069. doi:10.1080/21655979.2021.2008697(IF:3.269)
[75] Xu S, Zhou L, Guo S, et al. Different pituitary action of NK3Ra and NK3Rb in grass carp. Gen Comp Endocrinol. 2021;313:113829. doi:10.1016/j.ygcen.2021.113829(IF:2.822)
[76] Wang Y, Zhao S, Li G, Wang D, Jin Y. Neuroprotective Effect of HOTAIR Silencing on Isoflurane-Induced Cognitive Dysfunction via Sponging microRNA-129-5p and Inhibiting Neuroinflammation [published online ahead of print, 2022 Jan 13]. Neuroimmunomodulation. 2022;1-11. doi:10.1159/000521014(IF:2.492)
[77] Li J, Xu S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson's disease. Exp Ther Med. 2022;23(4):293. doi:10.3892/etm.2022.11223(IF:2.447)
[78] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[79] Qu D, Tan XH, Zhang KK, Wang Q, Wang HJ. ATF3 mRNA, but not BTG2, as a possible marker for vital reaction of skin contusion. Forensic Sci Int. 2019;303:109937. doi:10.1016/j.forsciint.2019.109937(IF:1.990)

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix基于Hifair® Ⅲ Reverse Transcriptase而开发的即用型预混液。与Hifair® Ⅱ Reverse Transcriptase相比,Hifair® Ⅲ Reverse Transcriptase热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录。

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅲ Reverse Transcriptase,RNase inhibitor,dNTP,Random primers/Oligo dT primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free ddH2O即可进行反应。

产品组分

组分编号

组分名称

产品编号/规格

11137ES10 (10 T)

11137ES60 (100 T)

11137-A

RNase-free H2O

1 mL

2×1 mL

11137-B

4×Hifair® Ⅲ SuperMix

50 μL

500 μL

 

产品应用

适用于 RT-qPCR 实验。

 

运输和保存方法

冰袋运输。-20ºC保存,有效期18个月。

 

第一链 cDNA 合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase-free H2O

To 20 μL

25℃

5 min

4×Hifair® Ⅲ SuperMix

5 μL

55℃

15 min

Total RNA

10 pg -5 μg

85℃

5 min

or mRNA

10 pg-500 ng

   

【注】:1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA;

2. 逆转录温度:推荐使用55℃。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60℃。

※ 逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

 

注意事项

1.可以室温溶解,溶解后宜存放于冰盒内或冰浴上,使用完毕后应立即置于-20℃保存。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅作科研用途! 

HB220308

 

Q:逆转录试剂 11137ES 中引物是随机引物还是oligo dT,还是二者的混合物?

A:二者的混合物。

Q:能否用来做miRNA/circRNA/lncRNA 的逆转录?

A:有A 尾的 lncRNA 可以逆转录, circRNA miRNA 和无 A 尾的 lncRNA 用 不能进行逆转录。microRNA 需要特殊的茎环引物, 需特别针对的逆转录试剂盒。

Q:11137 可以逆转真菌(或其他物种)RNA 吗?

A:RNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后,逆转录试剂盒都可以用,没有特别针对的。

[1] Hu X, Pang J, Zhang J, et al. Discovery of Novel GR Ligands toward Druggable GR Antagonist Conformations Identified by MD Simulations and Markov State Model Analysis. Adv Sci (Weinh). 2022;9(3):e2102435. doi:10.1002/advs.202102435(IF:16.806)
[2] Zhong Z, Wu X, Wang Y, et al. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater. 2021;10:195-206. Published 2021 Sep 16. doi:10.1016/j.bioactmat.2021.09.013(IF:14.593)
[3] Liu J, Qu M, Wang C, et al. A Dual-Cross-Linked Hydrogel Patch for Promoting Diabetic Wound Healing. Small. 2022;18(17):e2106172. doi:10.1002/smll.202106172(IF:13.281)
[4] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[5] Yuan H, Zhao L, Yuan Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics. 2021;11(17):8362-8378. Published 2021 Jul 25. doi:10.7150/thno.57531(IF:11.556)
[6] Kong D, Pan X, Jing Y, et al. ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf. New Phytol. 2021;230(4):1533-1549. doi:10.1111/nph.17293(IF:10.152)
[7] Mao S, Wang B, Yue L, Xia W. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym. 2021;262:117972. doi:10.1016/j.carbpol.2021.117972(IF:9.381)
[8] Wang S, Li Y, Zhong L, et al. Efficient gene editing through an intronic selection marker in cells. Cell Mol Life Sci. 2022;79(2):111. Published 2022 Jan 31. doi:10.1007/s00018-022-04152-1(IF:9.261)
[9] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[10] Wang X, Hu Y, He W, et al. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation [published online ahead of print, 2022 Jun 1]. Plant Commun. 2022;100345. doi:10.1016/j.xplc.2022.100345(IF:8.625)
[11] Deng X, Ye D, Hua K, et al. MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor. Cell Death Dis. 2021;12(9):810. Published 2021 Aug 26. doi:10.1038/s41419-021-04105-9(IF:8.469)
[12] Wang Y, Xue T, Wang M, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens Actuators B Chem. 2022;362:131765. doi:10.1016/j.snb.2022.131765(IF:7.460)
[13] Fu W, Zhang M, Liao J, et al. Discovery of a Novel Androgen Receptor Antagonist Manifesting Evidence to Disrupt the Dimerization of the Ligand-Binding Domain via Attenuating the Hydrogen-Bonding Network Between the Two Monomers. J Med Chem. 2021;64(23):17221-17238. doi:10.1021/acs.jmedchem.1c01287(IF:7.446)
[14] Cen Y, Zou X, Zhong Q, et al. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radic Biol Med. 2022;184:17-29. doi:10.1016/j.freeradbiomed.2022.03.016(IF:7.376)
[15] Shi W, Ma Q, Yin W, et al. StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato [published online ahead of print, 2022 May 2]. J Exp Bot. 2022;erac171. doi:10.1093/jxb/erac171(IF:6.992)
[16] Zhang DW, Ye JJ, Sun Y, et al. CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis. J Inflamm Res. 2022;15:2491-2507. Published 2022 Apr 20. doi:10.2147/JIR.S355764(IF:6.922)
[17] Wang S, Huang J, Liu F, et al. Isosteviol Sodium Exerts Anti-Colitic Effects on BALB/c Mice with Dextran Sodium Sulfate-Induced Colitis Through Metabolic Reprogramming and Immune Response Modulation. J Inflamm Res. 2021;14:7107-7130. Published 2021 Dec 20. doi:10.2147/JIR.S344990(IF:6.922)
[18] Ma C, Zhang L, He T, et al. Single cell Raman spectroscopy to identify different stages of proliferating human hepatocytes for cell therapy. Stem Cell Res Ther. 2021;12(1):555. Published 2021 Oct 30. doi:10.1186/s13287-021-02619-9(IF:6.832)
[19] Jiang M, Tang T, Liang X, et al. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Prolif. 2021;54(6):e13042. doi:10.1111/cpr.13042(IF:6.831)
[20] Zhang Y, Li Y, Sun C, et al. Effect of Pterostilbene, a Natural Derivative of Resveratrol, in the Treatment of Colorectal Cancer through Top1/Tdp1-Mediated DNA Repair Pathway. Cancers (Basel). 2021;13(16):4002. Published 2021 Aug 9. doi:10.3390/cancers13164002(IF:6.639)
[21] Wang S, Huang J, Tan KS, Deng L, Liu F, Tan W. Isosteviol Sodium Ameliorates Dextran Sodium Sulfate-Induced Chronic Colitis through the Regulation of Metabolic Profiling, Macrophage Polarization, and NF-κB Pathway. Oxid Med Cell Longev. 2022;2022:4636618. Published 2022 Jan 27. doi:10.1155/2022/4636618(IF:6.543)
[22] Hu X, Pang J, Chen C, et al. Discovery of novel non-steroidal selective glucocorticoid receptor modulators by structure- and IGN-based virtual screening, structural optimization, and biological evaluation. Eur J Med Chem. 2022;237:114382. doi:10.1016/j.ejmech.2022.114382(IF:6.514)
[23] Jiao C, Zou J, Chen Z, et al. Dietary Glutamine Inclusion Regulates Immune and Antioxidant System, as Well as Programmed Cell Death in Fish to Protect against Flavobacterium columnare Infection. Antioxidants (Basel). 2021;11(1):44. Published 2021 Dec 26. doi:10.3390/antiox11010044(IF:6.313)
[24] Ma D, Wei J, Chen S, et al. Fucoidan Inhibits the Progression of Hepatocellular Carcinoma via Causing lncRNA LINC00261 Overexpression. Front Oncol. 2021;11:653902. Published 2021 Apr 13. doi:10.3389/fonc.2021.653902(IF:6.244)
[25] Zhao LN, Yuan HF, Wang YF, et al. IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin. 2022;43(6):1484-1494. doi:10.1038/s41401-021-00765-7(IF:6.150)
[26] Yuan HF, Zhao M, Zhao LN, et al. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours [published online ahead of print, 2022 Jan 19]. Acta Pharmacol Sin. 2022;10.1038/s41401-021-00841-y. doi:10.1038/s41401-021-00841-y(IF:6.150)
[27] Pang JP, Shen C, Zhou WF, et al. Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacol Sin. 2022;43(1):229-239. doi:10.1038/s41401-021-00632-5(IF:6.150)
[28] Pang JP, Hu XP, Wang YX, et al. Discovery of a novel nonsteroidal selective glucocorticoid receptor modulator by virtual screening and bioassays [published online ahead of print, 2022 Feb 2]. Acta Pharmacol Sin. 2022;1-10. doi:10.1038/s41401-021-00855-6(IF:6.150)
[29] Zi Z, Zhao H, Wang H, Ma X, Wei F. B7-H3 Chimeric Antigen Receptor Redirected T Cells Target Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel). 2020;12(12):3815. Published 2020 Dec 17. doi:10.3390/cancers12123815(IF:6.126)
[30] Yu X, Hu L, Li S, et al. Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis. 2019;10(4):280. Published 2019 Mar 25. doi:10.1038/s41419-019-1509-1(IF:5.959)
[31] Shi X, Ye C, Qin X, et al. Novel Pituitary Actions of TAC4 Gene Products in Teleost. Int J Mol Sci. 2021;22(23):12893. Published 2021 Nov 29. doi:10.3390/ijms222312893(IF:5.924)
[32] Yang N, Zhang X, Li L, et al. Ginsenoside Rc Promotes Bone Formation in Ovariectomy-Induced Osteoporosis In Vivo and Osteogenic Differentiation In Vitro. Int J Mol Sci. 2022;23(11):6187. Published 2022 May 31. doi:10.3390/ijms23116187(IF:5.924)
[33] Wang X, Li W, Jiang H, et al. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci. 2022;23(12):6442. Published 2022 Jun 9. doi:10.3390/ijms23126442(IF:5.924)
[34] Jiang R, Xu J, Zhang Y, Zhu X, Liu J, Tan Y. Ligustrazine Alleviate Acute Lung Injury Through Suppressing Pyroptosis and Apoptosis of Alveolar Macrophages. Front Pharmacol. 2021;12:680512. Published 2021 May 28. doi:10.3389/fphar.2021.680512(IF:5.811)
[35] Xie T, Chen X, Chen W, et al. Curcumin is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front Pharmacol. 2021;12:796565. Published 2021 Dec 10. doi:10.3389/fphar.2021.796565(IF:5.811)
[36] Sun L, Cao Y, Kong Q, et al. Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation. Genomics. 2021;113(5):2925-2933. doi:10.1016/j.ygeno.2021.06.028(IF:5.736)
[37] Xia C, Qin X, Zhou L, et al. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne). 2021;12:762826. Published 2021 Nov 3. doi:10.3389/fendo.2021.762826(IF:5.555)
[38] Yuan J, Wang JM, Li ZW, et al. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med. 2021;16(1):55. Published 2021 Jul 8. doi:10.1186/s13020-021-00465-8(IF:5.455)
[39] Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res. 2022;254:126912. doi:10.1016/j.micres.2021.126912(IF:5.415)
[40] Zhang X, Zhang B, Li L, Li X, Zhang J, Chen G. Fermented noni (Morinda citrifolia L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells [published online ahead of print, 2022 Jul 14]. Food Funct. 2022;10.1039/d2fo00595f. doi:10.1039/d2fo00595f(IF:5.396)
[41] Yu S, Liu S, Wang N, et al. Novel insights into antidepressant mechanism of Kai Xin San formula: Inhibiting NLRP3 inflammasome activation by promoting autophagy. Phytomedicine. 2021;93:153792. doi:10.1016/j.phymed.2021.153792(IF:5.340)
[42] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[43] Qi M, Zhu X, Yu X, et al. Preparation of W/O Hypaphorine-Chitosan Nanoparticles and Its Application on Promoting Chronic Wound Healing via Alleviating Inflammation Block. Nanomaterials (Basel). 2021;11(11):2830. Published 2021 Oct 25. doi:10.3390/nano11112830(IF:5.076)
[44] Zhang Y, Sun M, Jian S, et al. mPEG2k-PCLx Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm. 2021;18(7):2586-2599. doi:10.1021/acs.molpharmaceut.1c00078(IF:4.939)
[45] Hu R, Zhu X, Chen C, Xu R, Li Y, Xu W. RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs. Cell Prolif. 2018;51(6):e12508. doi:10.1111/cpr.12508(IF:4.936)
[46] Li Z, Wang Y, Hu R, Xu R, Xu W. LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity. Cell Prolif. 2018;51(6):e12504. doi:10.1111/cpr.12504(IF:4.936)
[47] Wang Y, Hu W, Deng Z, He X. Rapid identification of magnesium ascorbyl phosphate utilizing phosphatase through a chromogenic change-coupled activity assay. Appl Microbiol Biotechnol. 2021;105(7):2901-2909. doi:10.1007/s00253-021-11229-7(IF:4.813)
[48] Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol. 2022;13:855959. Published 2022 Apr 21. doi:10.3389/fphys.2022.855959(IF:4.566)
[49] Xu X, Liu W, Liu X, et al. Genetic manipulation of bermudagrass photosynthetic biosynthesis using Agrobacterium-mediated transformation. Physiol Plant. 2022;174(3):e13710. doi:10.1111/ppl.13710(IF:4.500)
[50] Wang Y, Zhu GQ, Tian D, et al. Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer. 2022;22(1):316. Published 2022 Mar 24. doi:10.1186/s12885-022-09377-8(IF:4.430)
[51] Yue L, Lin H, Yuan S, et al. miR-1251-5p Overexpression Inhibits Proliferation, Migration, and Immune Escape in Clear Cell Renal Cell Carcinoma by Targeting NPTX2. J Oncol. 2022;2022:3058588. Published 2022 Mar 10. doi:10.1155/2022/3058588(IF:4.375)
[52] Wang Y, Zhang J, Xu Z, et al. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma. J Ethnopharmacol. 2022;292:115179. doi:10.1016/j.jep.2022.115179(IF:4.360)
[53] Xiang B, Yang J, Zhang J, et al. The role of genes affected by human evolution marker GNA13 in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2020;98:109764. doi:10.1016/j.pnpbp.2019.109764(IF:4.315)
[54] Lei J, Zhang X, Tan R, Li Y, Zhao K, Niu H. Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med. 2022;11(12):3319. Published 2022 Jun 9. doi:10.3390/jcm11123319(IF:4.242)
[55] Ye W, Yao M, Dong Y, et al. Remdesivir (GS-5734) Impedes Enterovirus Replication Through Viral RNA Synthesis Inhibition [published correction appears in Front Microbiol. 2020 Nov 23;11:621197]. Front Microbiol. 2020;11:1105. Published 2020 Jun 12. doi:10.3389/fmicb.2020.01105(IF:4.236)
[56] Zhang Q, Wu JF, Shi QL, et al. The Neuronal Activation of Deep Cerebellar Nuclei Is Essential for Environmental Enrichment-Induced Post-Stroke Motor Recovery. Aging Dis. 2019;10(3):530-543. Published 2019 Jun 1. doi:10.14336/AD.2018.1220(IF:4.232)
[57] Lv N, Zhao M, Han Y, et al. The roles of bone morphogenetic protein 2 in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection. Toxicol Appl Pharmacol. 2018;352:68-76. doi:10.1016/j.taap.2018.05.028(IF:4.219)
[58] Su H, Liang J, Abou-Elwafa SF, et al. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biol. 2021;21(1):453. Published 2021 Oct 6. doi:10.1186/s12870-021-03231-y(IF:4.215)
[59] Shan N, Zhang Y, Xu Y, et al. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022;22(1):108. Published 2022 Mar 9. doi:10.1186/s12870-022-03498-9(IF:4.215)
[60] Hu Q, Xu S, Ye C, Jia J, Zhou L, Hu G. Novel Pituitary Actions of Epidermal Growth Factor: Receptor Specificity and Signal Transduction for UTS1, EGR1, and MMP13 Regulation by EGF. Int J Mol Sci. 2019;20(20):5172. Published 2019 Oct 18. doi:10.3390/ijms20205172(IF:4.183)
[61] Cui P, Lin Q, Fang D, et al. Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid β-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. Plant Cell Physiol. 2018;59(10):1990-2003. doi:10.1093/pcp/pcy117(IF:4.059)
[62] Wang Y, Li N, Tian D, et al. Analysis of m6A-Related lncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma. Cancer Manag Res. 2021;13:6451-6471. Published 2021 Aug 16. doi:10.2147/CMAR.S322179(IF:3.989)
[63] Xue J, Chen L, Cheng H, et al. The Identification and Validation of Hub Genes Associated with Acute Myocardial Infarction Using Weighted Gene Co-Expression Network Analysis. J Cardiovasc Dev Dis. 2022;9(1):30. Published 2022 Jan 17. doi:10.3390/jcdd9010030(IF:3.948)
[64] Hou J, Sun Y, Wang L, Jiang Y, Chen N, Tong S. Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in Populus trichocarpa. Plants (Basel). 2021;10(11):2284. Published 2021 Oct 25. doi:10.3390/plants10112284(IF:3.935)
[65] Wu J, Lu J, Huang J, et al. Variations in Energy Metabolism Precede Alterations in Cardiac Structure and Function in Hypertrophic Preconditioning. Front Cardiovasc Med. 2020;7:602100. Published 2020 Dec 11. doi:10.3389/fcvm.2020.602100(IF:3.915)
[66] Guo Q, Li Y, Chen Y, et al. β-Elemene induces apoptosis by activating the P53 pathway in human hypertrophic scar fibroblasts. IUBMB Life. 2022;74(6):508-518. doi:10.1002/iub.2614(IF:3.885)
[67] Jiang SJ, Xiao X, Zheng J, et al. Antibacterial and antibiofilm activities of novel antimicrobial peptide DP7 against the periodontal pathogen Porphyromonas gingivalis [published online ahead of print, 2022 May 14]. J Appl Microbiol. 2022;10.1111/jam.15614. doi:10.1111/jam.15614(IF:3.772)
[68] Zhang F, Teng Z, Wang L, Wang L, Huang T, Zhang X. Dietary Selenium Deficiency and Excess Accelerate Ubiquitin-Mediated Protein Degradation in the Muscle of Rainbow Trout (Oncorhynchus mykiss) via Akt/FoxO3a and NF-κB Signaling Pathways. Biol Trace Elem Res. 2022;200(3):1361-1375. doi:10.1007/s12011-021-02726-x(IF:3.738)
[69] YujiaLiu, Shi C, Zhang G, et al. Antimicrobial mechanism of 4-hydroxyphenylacetic acid on Listeria monocytogenes membrane and virulence. Biochem Biophys Res Commun. 2021;572:145-150. doi:10.1016/j.bbrc.2021.07.096(IF:3.575)
[70] Fu H, Zhang Z, Dai Y, Liu S, Fu E. Brequinar inhibits enterovirus replication by targeting biosynthesis pathway of pyrimidines. Am J Transl Res. 2020;12(12):8247-8255. Published 2020 Dec 25. (IF:3.375)
[71] Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered. 2022;13(1):1103-1114. doi:10.1080/21655979.2021.2017629(IF:3.269)
[72] Zhang Y, Zhang R, Lu L, et al. Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway. Bioengineered. 2022;13(4):8926-8936. doi:10.1080/21655979.2022.2056814(IF:3.269)
[73] Mei X, Din H, Zhao J, Tong J, Zhu W. Transcription factor Krüppel-like factor 5-regulated N-myc downstream-regulated gene 2 reduces IL-1β-induced chondrocyte inflammatory injury and extracellular matrix degradation. Bioengineered. 2021;12(1):7020-7032. doi:10.1080/21655979.2021.1971483(IF:3.269)
[74] Cao S, Li X, Feng T, et al. Hirudin promotes proliferation and osteogenic differentiation of HBMSCs via activation of cyclic guanosine monophosphate (cGMP)/protein kinase-G (PKG) signaling pathway. Bioengineered. 2022;13(3):6061-6069. doi:10.1080/21655979.2021.2008697(IF:3.269)
[75] Xu S, Zhou L, Guo S, et al. Different pituitary action of NK3Ra and NK3Rb in grass carp. Gen Comp Endocrinol. 2021;313:113829. doi:10.1016/j.ygcen.2021.113829(IF:2.822)
[76] Wang Y, Zhao S, Li G, Wang D, Jin Y. Neuroprotective Effect of HOTAIR Silencing on Isoflurane-Induced Cognitive Dysfunction via Sponging microRNA-129-5p and Inhibiting Neuroinflammation [published online ahead of print, 2022 Jan 13]. Neuroimmunomodulation. 2022;1-11. doi:10.1159/000521014(IF:2.492)
[77] Li J, Xu S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson's disease. Exp Ther Med. 2022;23(4):293. doi:10.3892/etm.2022.11223(IF:2.447)
[78] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[79] Qu D, Tan XH, Zhang KK, Wang Q, Wang HJ. ATF3 mRNA, but not BTG2, as a possible marker for vital reaction of skin contusion. Forensic Sci Int. 2019;303:109937. doi:10.1016/j.forsciint.2019.109937(IF:1.990)

第五代耐热逆转录酶(无甘油版)|Hifair® V Reverse Transcriptase

第五代耐热逆转录酶(无甘油版)|Hifair® V Reverse Transcriptase

产品说明书

FAQ

COA

已发表文献

产品简介

 

Hifair® V Reverse Transcriptase是在Hieff® M-MLV (H-) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H-) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® V Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。

 

产品信息

 

货号

11301ES06 / 11301ES12 / 11301ES62/ 11301ES75 /11301ES96

规格

3 KU / 12 KU / 120 KU / 300 KU / 3000 KU

单位定义

Poly(A) .Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

 

组分信息

 

组分名称

11301ES06

11301ES12

11301ES62

11301ES75

11301ES96

Hifair® V Reverse Transcriptase (600 U/μL)

5 μL

20 μL

200 μL

500 μL

5 mL

 

储存条件

 

2~8℃保存,有效期6个月。

 

使用说明

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNase free ddH2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)

or Gene Specific Primers (2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 1 ng -5 μg或mRNA: 1-500 ng

65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后,加入下表中的逆转录反应液,并轻轻吹打混匀。

 

2. 逆转录反应体系配制(20 μL体系)

组分

使用量

上一步的反应液

13 μL

5×Hifair® V Buffer

4 μL

dNTP Mix (10 mM)

1 μL

Hifair® V Reverse Transcriptase (600 U/μL)

200 U

RNase inhibitor (40 U/µL)

1 μL

RNase free ddH2O

To 20 μL

3. 逆转录程序设置

温度

时间

25℃*

5 min

42℃**

15-30 min

85℃***

5 min

*当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18或Gene Specific Primers,此步可省略。

**逆转录温度:推荐使用42℃。对于高GC含量模板或者复杂二级结构的模板,可将逆转录温度提高至50-55℃。

***85℃加热5 min,目的是使逆转录酶失活。

逆转录产物可立即用于后续PCR或qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

该逆转录酶也适用于一步法RT-qPCR,推荐每25 μL反应体系,添加10-20 U逆转录酶,也可根据实际情况逐步增加逆转录酶用量。

 

注意事项

 

1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。

2. 所有操作均应在冰上进行,防止RNA降解。

3. 为保证高效率逆转录,建议使用高质量的RNA样本

4. 本产品仅用作科研用途。

5. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

Ver.CN20231116

Q:这款产品有什么特点?

A:M-MLV (H-) Reverse Transcriptase 是通过对野生型 M-MLV 逆转录酶基因改造,在大肠杆菌中表达纯化而成。. RNaseH 活性,具有合成能力高,热稳定性好和半衰期长的特点。

1. Liu C X, Li X, Nan F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J]. Cell, 2019, 177(4): 865-880. e21.IF31.398

2. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

3. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccinatio Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

4. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244.IF 12.353

5. Tao L, Yi Y, Chen Y, et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages[J]. bioRxiv, 2020.( IF10.717)

6. Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation[J]. Biomaterials, 2020, 237: 119830.(IF10.317)

7. Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription[J]. Theranostics, 2020, 10(19): 8834. (IF8.579) 11120ES

8. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration[J]. Chemical Engineering Journal, 2019, 362: 269-279.IF8.355

9. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide PtrCLE20 inhibits vascular cambium activity in Populus[J]. Plant Biotechnology Journal, 2020, 18(1): 195-206.(IF8.154)

10. Chen L, Lam J C W, Tang L, et al. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish[J]. Environmental Science & Technology, 2020.(IF7.864)

11. Zhao P, Zhang J, Wu A, et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity[J]. Journal of Controlled Release, 2020. ( IF7.727)

12. Xu X, Gao J, Dai W, et al. Gene activation by a CRISPR-assisted trans enhancer[J]. eLife, 2019, 8: e45973.IF7.551

13. Zhao Y, Wang H P, Yu C, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresource Technology, 2020, 319: 124150.(IF7.539)

14. Li X, Zhang X, Zhao Y, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresource Technology, 2020, 315: 123833.(IF7.539)

15. Nie, W., et al., Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering[J]. Carbon, 2017.116, 325-337.IF 7.082

16. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide Ptr CLE 20 inhibits vascular cambium activity in Populus[J]. Plant biotechnology journal, 2019.IF6.84

17. Peng L, Wang Y, Yang B, et al. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop[J]. Environmental Pollution, 2020: 115606.(IF6.793)

18. Li A, Liu Q, Li Q, et al. Berberine reduces pyruvate-driven hepatic glucose production by limiting mitochondrial import of pyruvate through mitochondrial pyruvate carrier 1[J]. EBioMedicine, 2018, 34: 243-255. IF6.68

19. Lou M D, Li J, Cheng Y, et al. CREB mediates glucagon action to upregulate hepatic MPC1: inhibitory effect of ginsenoside Rb1 on hepatic gluconeogenesis[J]. British journal of pharmacology, 2019.IF6.583

20. Fan L, Ye H, Wan Y, et al. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice[J]. Metabolism, 2019, 100: 153955.IF6.513

1. Liu C X, Li X, Nan F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J]. Cell, 2019, 177(4): 865-880. e21.IF31.398

2. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

3. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccinatio Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

4. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244.IF 12.353

5. Tao L, Yi Y, Chen Y, et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages[J]. bioRxiv, 2020.( IF10.717)

6. Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation[J]. Biomaterials, 2020, 237: 119830.(IF10.317)

7. Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription[J]. Theranostics, 2020, 10(19): 8834. (IF8.579) 11120ES

8. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration[J]. Chemical Engineering Journal, 2019, 362: 269-279.IF8.355

9. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide PtrCLE20 inhibits vascular cambium activity in Populus[J]. Plant Biotechnology Journal, 2020, 18(1): 195-206.(IF8.154)

10. Chen L, Lam J C W, Tang L, et al. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish[J]. Environmental Science & Technology, 2020.(IF7.864)

11. Zhao P, Zhang J, Wu A, et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity[J]. Journal of Controlled Release, 2020. ( IF7.727)

12. Xu X, Gao J, Dai W, et al. Gene activation by a CRISPR-assisted trans enhancer[J]. eLife, 2019, 8: e45973.IF7.551

13. Zhao Y, Wang H P, Yu C, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresource Technology, 2020, 319: 124150.(IF7.539)

14. Li X, Zhang X, Zhao Y, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresource Technology, 2020, 315: 123833.(IF7.539)

15. Nie, W., et al., Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering[J]. Carbon, 2017.116, 325-337.IF 7.082

16. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide Ptr CLE 20 inhibits vascular cambium activity in Populus[J]. Plant biotechnology journal, 2019.IF6.84

17. Peng L, Wang Y, Yang B, et al. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop[J]. Environmental Pollution, 2020: 115606.(IF6.793)

18. Li A, Liu Q, Li Q, et al. Berberine reduces pyruvate-driven hepatic glucose production by limiting mitochondrial import of pyruvate through mitochondrial pyruvate carrier 1[J]. EBioMedicine, 2018, 34: 243-255. IF6.68

19. Lou M D, Li J, Cheng Y, et al. CREB mediates glucagon action to upregulate hepatic MPC1: inhibitory effect of ginsenoside Rb1 on hepatic gluconeogenesis[J]. British journal of pharmacology, 2019.IF6.583

20. Fan L, Ye H, Wan Y, et al. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice[J]. Metabolism, 2019, 100: 153955.IF6.513

产品简介

 

Hifair® V Reverse Transcriptase是在Hieff® M-MLV (H-) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H-) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® V Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。

 

产品信息

 

货号

11301ES06 / 11301ES12 / 11301ES62/ 11301ES75 /11301ES96

规格

3 KU / 12 KU / 120 KU / 300 KU / 3000 KU

单位定义

Poly(A) .Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。

 

组分信息

 

组分名称

11301ES06

11301ES12

11301ES62

11301ES75

11301ES96

Hifair® V Reverse Transcriptase (600 U/μL)

5 μL

20 μL

200 μL

500 μL

5 mL

 

储存条件

 

2~8℃保存,有效期6个月。

 

使用说明

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNase free ddH2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)

or Gene Specific Primers (2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 1 ng -5 μg或mRNA: 1-500 ng

65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后,加入下表中的逆转录反应液,并轻轻吹打混匀。

 

2. 逆转录反应体系配制(20 μL体系)

组分

使用量

上一步的反应液

13 μL

5×Hifair® V Buffer

4 μL

dNTP Mix (10 mM)

1 μL

Hifair® V Reverse Transcriptase (600 U/μL)

200 U

RNase inhibitor (40 U/µL)

1 μL

RNase free ddH2O

To 20 μL

3. 逆转录程序设置

温度

时间

25℃*

5 min

42℃**

15-30 min

85℃***

5 min

*当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18或Gene Specific Primers,此步可省略。

**逆转录温度:推荐使用42℃。对于高GC含量模板或者复杂二级结构的模板,可将逆转录温度提高至50-55℃。

***85℃加热5 min,目的是使逆转录酶失活。

逆转录产物可立即用于后续PCR或qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

该逆转录酶也适用于一步法RT-qPCR,推荐每25 μL反应体系,添加10-20 U逆转录酶,也可根据实际情况逐步增加逆转录酶用量。

 

注意事项

 

1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。

2. 所有操作均应在冰上进行,防止RNA降解。

3. 为保证高效率逆转录,建议使用高质量的RNA样本

4. 本产品仅用作科研用途。

5. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

Ver.CN20231116

Q:这款产品有什么特点?

A:M-MLV (H-) Reverse Transcriptase 是通过对野生型 M-MLV 逆转录酶基因改造,在大肠杆菌中表达纯化而成。. RNaseH 活性,具有合成能力高,热稳定性好和半衰期长的特点。

1. Liu C X, Li X, Nan F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J]. Cell, 2019, 177(4): 865-880. e21.IF31.398

2. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

3. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccinatio Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

4. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244.IF 12.353

5. Tao L, Yi Y, Chen Y, et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages[J]. bioRxiv, 2020.( IF10.717)

6. Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation[J]. Biomaterials, 2020, 237: 119830.(IF10.317)

7. Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription[J]. Theranostics, 2020, 10(19): 8834. (IF8.579) 11120ES

8. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration[J]. Chemical Engineering Journal, 2019, 362: 269-279.IF8.355

9. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide PtrCLE20 inhibits vascular cambium activity in Populus[J]. Plant Biotechnology Journal, 2020, 18(1): 195-206.(IF8.154)

10. Chen L, Lam J C W, Tang L, et al. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish[J]. Environmental Science & Technology, 2020.(IF7.864)

11. Zhao P, Zhang J, Wu A, et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity[J]. Journal of Controlled Release, 2020. ( IF7.727)

12. Xu X, Gao J, Dai W, et al. Gene activation by a CRISPR-assisted trans enhancer[J]. eLife, 2019, 8: e45973.IF7.551

13. Zhao Y, Wang H P, Yu C, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresource Technology, 2020, 319: 124150.(IF7.539)

14. Li X, Zhang X, Zhao Y, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresource Technology, 2020, 315: 123833.(IF7.539)

15. Nie, W., et al., Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering[J]. Carbon, 2017.116, 325-337.IF 7.082

16. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide Ptr CLE 20 inhibits vascular cambium activity in Populus[J]. Plant biotechnology journal, 2019.IF6.84

17. Peng L, Wang Y, Yang B, et al. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop[J]. Environmental Pollution, 2020: 115606.(IF6.793)

18. Li A, Liu Q, Li Q, et al. Berberine reduces pyruvate-driven hepatic glucose production by limiting mitochondrial import of pyruvate through mitochondrial pyruvate carrier 1[J]. EBioMedicine, 2018, 34: 243-255. IF6.68

19. Lou M D, Li J, Cheng Y, et al. CREB mediates glucagon action to upregulate hepatic MPC1: inhibitory effect of ginsenoside Rb1 on hepatic gluconeogenesis[J]. British journal of pharmacology, 2019.IF6.583

20. Fan L, Ye H, Wan Y, et al. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice[J]. Metabolism, 2019, 100: 153955.IF6.513

1. Liu C X, Li X, Nan F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J]. Cell, 2019, 177(4): 865-880. e21.IF31.398

2. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

3. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccinatio Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

4. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244.IF 12.353

5. Tao L, Yi Y, Chen Y, et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages[J]. bioRxiv, 2020.( IF10.717)

6. Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation[J]. Biomaterials, 2020, 237: 119830.(IF10.317)

7. Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription[J]. Theranostics, 2020, 10(19): 8834. (IF8.579) 11120ES

8. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration[J]. Chemical Engineering Journal, 2019, 362: 269-279.IF8.355

9. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide PtrCLE20 inhibits vascular cambium activity in Populus[J]. Plant Biotechnology Journal, 2020, 18(1): 195-206.(IF8.154)

10. Chen L, Lam J C W, Tang L, et al. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish[J]. Environmental Science & Technology, 2020.(IF7.864)

11. Zhao P, Zhang J, Wu A, et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity[J]. Journal of Controlled Release, 2020. ( IF7.727)

12. Xu X, Gao J, Dai W, et al. Gene activation by a CRISPR-assisted trans enhancer[J]. eLife, 2019, 8: e45973.IF7.551

13. Zhao Y, Wang H P, Yu C, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresource Technology, 2020, 319: 124150.(IF7.539)

14. Li X, Zhang X, Zhao Y, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresource Technology, 2020, 315: 123833.(IF7.539)

15. Nie, W., et al., Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering[J]. Carbon, 2017.116, 325-337.IF 7.082

16. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide Ptr CLE 20 inhibits vascular cambium activity in Populus[J]. Plant biotechnology journal, 2019.IF6.84

17. Peng L, Wang Y, Yang B, et al. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop[J]. Environmental Pollution, 2020: 115606.(IF6.793)

18. Li A, Liu Q, Li Q, et al. Berberine reduces pyruvate-driven hepatic glucose production by limiting mitochondrial import of pyruvate through mitochondrial pyruvate carrier 1[J]. EBioMedicine, 2018, 34: 243-255. IF6.68

19. Lou M D, Li J, Cheng Y, et al. CREB mediates glucagon action to upregulate hepatic MPC1: inhibitory effect of ginsenoside Rb1 on hepatic gluconeogenesis[J]. British journal of pharmacology, 2019.IF6.583

20. Fan L, Ye H, Wan Y, et al. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice[J]. Metabolism, 2019, 100: 153955.IF6.513

Hifair®超逆转录酶Ultra Reverse Transcriptase (400 U/μL)

Hifair®超逆转录酶Ultra Reverse Transcriptase (400 U/μL)

产品说明书

FAQ

COA

已发表文献

 

Hifair® Ultra Reverse TranscriptaseHieff® M-MLV (H) Reverse Transcriptase进行基因工程改造的全新逆转录酶,该酶缺乏RNase H活性,合成全长cDNA的能力大幅提升,可扩增长达20 kbcDNAHifair® Ultra Reverse Transcriptase的热稳定性显著提高,耐受温度达65,可对具有复杂二级结构的RNA模板高效逆转录。与Hieff® M-MLV (H) Reverse Transcriptase相比,Hifair® Ultra Reverse Transcriptase具有更高的持续合成能力及合成速率,同时增强了耐抑制剂的能力,可有效解决样品中的抑制剂导致逆转录效率低下的问题

 

产品组分

编号

组分

产品编号/规格

14605ES03 

14605ES08

14605ES10

14605

Hifair® Ultra Reverse Transcriptase (400 U/μL)

1 mL

5 mL

10 mL

 

产品应用

全长cDNA文库构建;

终点法PCR

RT-PCR及实时定量RT-PCR等。

 

运输与保存方法

干冰运输-20ºC保存,有效期一年。

 

注意事项

1)请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染;

2)所有操作均应在冰上进行,防止发生RNA降解;

3)为保证逆转录成功,建议使用高质量的RNA样本;

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅用作科研用途!

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNase free ddH2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)  

or Gene Specific Primers (2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 10 pg -5 μgmRNA:1 pg-500 ng

65加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后加入下表中的逆转录反应液,并用移液器轻轻吹打混匀。

2. 逆转录反应液配制

组分

使用量

上一步的反应液

13 μL

5×Hifair® Ultra Reverse Transcriptase Reaction Buffer (cat#15664)

4 μL

dNTP Mix (10 mM)

1 μL

Hifair® Ultra Reverse Transcriptase (400 U/μL)

200 U

RNase Inhibitor (40 U/µL)

1 μL

3. 逆转录程序设置

温度

时间

25℃

5 min

50℃

15 min

85

5 min

【注】1)当使用Random Primers25,孵育5 min;若使用Oligo (dT)18Gene Specific Primers此步可省略

2)逆转录温度:推荐使用50。对于GC含量模板或者复杂模板,可将逆转录温度提高到55-60

385加热5 min,目的是使逆转录酶失活。

逆转录产物可立即用于后续PCRqPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

HB220901

Hifair®超逆转录酶Ultra Reverse Transcriptase (400 U/μL)

暂无内容

Hifair®超逆转录酶Ultra Reverse Transcriptase (400 U/μL)

暂无内容

 

Hifair® Ultra Reverse TranscriptaseHieff® M-MLV (H) Reverse Transcriptase进行基因工程改造的全新逆转录酶,该酶缺乏RNase H活性,合成全长cDNA的能力大幅提升,可扩增长达20 kbcDNAHifair® Ultra Reverse Transcriptase的热稳定性显著提高,耐受温度达65,可对具有复杂二级结构的RNA模板高效逆转录。与Hieff® M-MLV (H) Reverse Transcriptase相比,Hifair® Ultra Reverse Transcriptase具有更高的持续合成能力及合成速率,同时增强了耐抑制剂的能力,可有效解决样品中的抑制剂导致逆转录效率低下的问题

 

产品组分

编号

组分

产品编号/规格

14605ES03 

14605ES08

14605ES10

14605

Hifair® Ultra Reverse Transcriptase (400 U/μL)

1 mL

5 mL

10 mL

 

产品应用

全长cDNA文库构建;

终点法PCR

RT-PCR及实时定量RT-PCR等。

 

运输与保存方法

干冰运输-20ºC保存,有效期一年。

 

注意事项

1)请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染;

2)所有操作均应在冰上进行,防止发生RNA降解;

3)为保证逆转录成功,建议使用高质量的RNA样本;

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅用作科研用途!

 

第一链cDNA合成操作步骤

1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)

组分

使用量

RNase free ddH2O

to 13 μL

Oligo (dT)18 (50 μM)

or Random Primers (50 μM)  

or Gene Specific Primers (2 μM)

1 μL

or 1 μL

or 1 μL

模板RNA

Total RNA: 10 pg -5 μgmRNA:1 pg-500 ng

65加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后加入下表中的逆转录反应液,并用移液器轻轻吹打混匀。

2. 逆转录反应液配制

组分

使用量

上一步的反应液

13 μL

5×Hifair® Ultra Reverse Transcriptase Reaction Buffer (cat#15664)

4 μL

dNTP Mix (10 mM)

1 μL

Hifair® Ultra Reverse Transcriptase (400 U/μL)

200 U

RNase Inhibitor (40 U/µL)

1 μL

3. 逆转录程序设置

温度

时间

25℃

5 min

50℃

15 min

85

5 min

【注】1)当使用Random Primers25,孵育5 min;若使用Oligo (dT)18Gene Specific Primers此步可省略

2)逆转录温度:推荐使用50。对于GC含量模板或者复杂模板,可将逆转录温度提高到55-60

385加热5 min,目的是使逆转录酶失活。

逆转录产物可立即用于后续PCRqPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

HB220901

Hifair®超逆转录酶Ultra Reverse Transcriptase (400 U/μL)

暂无内容

Hifair®超逆转录酶Ultra Reverse Transcriptase (400 U/μL)

暂无内容

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit

产品说明书

FAQ

COA

已发表文献

 

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit是以RNA为模板进行多重定量PCR反应的试剂盒。在实验的过程中,逆转录和定量PCR在同一反应管中进行,简化了实验操作,降低了污染的风险。独特的Buffer设计,在体系中不包含影响冻干工艺的化学试剂,可用于一步法RT-qPCR冻干反应体系的配制和产品设计。

本试剂盒利用耐热Hifair® V Reverse Transcriptase高效合成第一链cDNA,并利用UNICON® HotStart Taq DNA Polymerase进行定量扩增。本试剂盒主要包含优化的冻干Buffer,Enzymes Mix等,缓冲液中已含有Mg2+dNTP等,并添加了有效抑制非特异性PCR扩增的因子和提升多重qPCR反应扩增效率的因子,能够在保证引物扩增效率的同时,进行多重荧光定量扩增反应。

 

产品组分

组分编号

组分名称

产品编号/规格

13800ES60

(100 T)

13800ES80

(1000 T)

13800ES92

(10000 T)

13800-A

4×Hifair® Lyo-Buffer

625 μL

6.25 mL

62.5 mL

13800-B

Hifair® Lyo-Enzyme Mix

100 μL

1 mL

10 mL

13800-C

DEPC-treated Water (DNase、RNase free)

1.5 mL

15 mL

150 mL

【注】1) 4×Hifair® Lyo-Buffer为Lyo-nCoV Multiplex One Step RT-qPCR Probe Buffer的简写。

  1. Hifair® Lyo-Enzyme Mix主要包含有耐热Hifair® V Reverse Transcriptase和UNICON® HotStart Taq DNA Polymerase。

 

适用机型

ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus™,ABI 7500, 7500 Fast, ViiA™7, QuantStudio™ 3 and 5, QuantStudio™ 6,7,12k Flex,Stratagene MX3000P™, MX3005P™, MX4000P™,Bio-Rad CFX96™, CFX384™, iCycler iQ™, iQ™5, MyiQ™, MiniOpticon™, Opticon®, Opticon® 2, Chromo4™,Eppendorf Mastercycler® ep realplex, realplex 2 s; Qiagen Corbett Rotor-Gene® Q, Rotor-Gene® 3000, Rotor-Gene® 6000,Roche Applied Science LightCycler® 480, LightCycler® 2.0; Lightcycler® 96,Thermo Scientific PikoReal Cycler; Cepheid SmartCycler®; Illumina Eco qPCR

 

运输与保存方式

  1. 运输方式:冰袋运输。
  2. 保存方式:

Part 1: 13800-A【4×Hifair® Lyo-Buffer 】-20°C保存,有效期1年。           

13800-C【DEPC-treated Water (DNase、RNase free)】-20°C保存,有效期1年。        

Part 2: 13800-B【Hifair® Lyo-Enzyme Mix 】4°C保存,有效期6个月。

  1. 本品避免反复冻融。建议分装保存。

 

注意事项

1. 实验过程中请使用RNase free耗材。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

反应体系(以25 μL为例)

组分

体积(μL)

终浓度

4×Hifair® Lyo-Buffer

6.25

Hifair® Lyo-Enzyme Mix

1

Primer Mix (10 μM)

0.4

0.16 μM

Probe Mix (10 μM)

0.2

0.08 μM

模板RNA

1-5

RNase Free H2O

to 25

】:使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 引物浓度:Primer Mix中包含多对引物,通常每条引物终浓度可以根据情况在0.1-1.0 μM间进行调整。

b) 探针浓度Probe Mix中包含多条不同荧光信号的探针,每条探针的浓度可根据具体情况在50-300 nM间调整。

c) 模板稀释:qPCR灵敏度极高,建议将模板进行稀释使用,控制Ct值在20-35之间适宜。

d) 反应体系:推荐使用25 μL或50 μL,以保证目的基因扩增的有效性和重复性。

e) 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染。

 

标准扩增程序

 

反应阶段

温度

时间

循环数

1

逆转录

50°Ca

10 min

1

2

预变性

95°C

5 min

1

3

扩增反应

95°C

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit15 sec

45

60°Cb

30 secc

【注】:                                                                                          

a) 逆转录:42°C或者50°C均可,时间 10-15 min。

b) 扩增反应:扩增反应温度根据设计的引物Tm值进行调整。CDC官方推荐的ORF1abN引物,退火温度建议≥60°C

c) 荧光信号采集:不同的qPCR检测仪器所需的荧光信号采集时间不同,请根据最短时间限制进行设置。

 

HB211220

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit

暂无内容

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit

暂无内容

 

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit是以RNA为模板进行多重定量PCR反应的试剂盒。在实验的过程中,逆转录和定量PCR在同一反应管中进行,简化了实验操作,降低了污染的风险。独特的Buffer设计,在体系中不包含影响冻干工艺的化学试剂,可用于一步法RT-qPCR冻干反应体系的配制和产品设计。

本试剂盒利用耐热Hifair® V Reverse Transcriptase高效合成第一链cDNA,并利用UNICON® HotStart Taq DNA Polymerase进行定量扩增。本试剂盒主要包含优化的冻干Buffer,Enzymes Mix等,缓冲液中已含有Mg2+dNTP等,并添加了有效抑制非特异性PCR扩增的因子和提升多重qPCR反应扩增效率的因子,能够在保证引物扩增效率的同时,进行多重荧光定量扩增反应。

 

产品组分

组分编号

组分名称

产品编号/规格

13800ES60

(100 T)

13800ES80

(1000 T)

13800ES92

(10000 T)

13800-A

4×Hifair® Lyo-Buffer

625 μL

6.25 mL

62.5 mL

13800-B

Hifair® Lyo-Enzyme Mix

100 μL

1 mL

10 mL

13800-C

DEPC-treated Water (DNase、RNase free)

1.5 mL

15 mL

150 mL

【注】1) 4×Hifair® Lyo-Buffer为Lyo-nCoV Multiplex One Step RT-qPCR Probe Buffer的简写。

  1. Hifair® Lyo-Enzyme Mix主要包含有耐热Hifair® V Reverse Transcriptase和UNICON® HotStart Taq DNA Polymerase。

 

适用机型

ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus™,ABI 7500, 7500 Fast, ViiA™7, QuantStudio™ 3 and 5, QuantStudio™ 6,7,12k Flex,Stratagene MX3000P™, MX3005P™, MX4000P™,Bio-Rad CFX96™, CFX384™, iCycler iQ™, iQ™5, MyiQ™, MiniOpticon™, Opticon®, Opticon® 2, Chromo4™,Eppendorf Mastercycler® ep realplex, realplex 2 s; Qiagen Corbett Rotor-Gene® Q, Rotor-Gene® 3000, Rotor-Gene® 6000,Roche Applied Science LightCycler® 480, LightCycler® 2.0; Lightcycler® 96,Thermo Scientific PikoReal Cycler; Cepheid SmartCycler®; Illumina Eco qPCR

 

运输与保存方式

  1. 运输方式:冰袋运输。
  2. 保存方式:

Part 1: 13800-A【4×Hifair® Lyo-Buffer 】-20°C保存,有效期1年。           

13800-C【DEPC-treated Water (DNase、RNase free)】-20°C保存,有效期1年。        

Part 2: 13800-B【Hifair® Lyo-Enzyme Mix 】4°C保存,有效期6个月。

  1. 本品避免反复冻融。建议分装保存。

 

注意事项

1. 实验过程中请使用RNase free耗材。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

反应体系(以25 μL为例)

组分

体积(μL)

终浓度

4×Hifair® Lyo-Buffer

6.25

Hifair® Lyo-Enzyme Mix

1

Primer Mix (10 μM)

0.4

0.16 μM

Probe Mix (10 μM)

0.2

0.08 μM

模板RNA

1-5

RNase Free H2O

to 25

】:使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 引物浓度:Primer Mix中包含多对引物,通常每条引物终浓度可以根据情况在0.1-1.0 μM间进行调整。

b) 探针浓度Probe Mix中包含多条不同荧光信号的探针,每条探针的浓度可根据具体情况在50-300 nM间调整。

c) 模板稀释:qPCR灵敏度极高,建议将模板进行稀释使用,控制Ct值在20-35之间适宜。

d) 反应体系:推荐使用25 μL或50 μL,以保证目的基因扩增的有效性和重复性。

e) 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染。

 

标准扩增程序

 

反应阶段

温度

时间

循环数

1

逆转录

50°Ca

10 min

1

2

预变性

95°C

5 min

1

3

扩增反应

95°C

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit15 sec

45

60°Cb

30 secc

【注】:                                                                                          

a) 逆转录:42°C或者50°C均可,时间 10-15 min。

b) 扩增反应:扩增反应温度根据设计的引物Tm值进行调整。CDC官方推荐的ORF1abN引物,退火温度建议≥60°C

c) 荧光信号采集:不同的qPCR检测仪器所需的荧光信号采集时间不同,请根据最短时间限制进行设置。

 

HB211220

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit

暂无内容

Hifair® Lyo-nCoV Multiplex One Step RT-qPCR Kit

暂无内容