重组FITC标记人VEGF165蛋白 Recombinant FITC-Labeled Human VEGF165 Protein,His-Avi Tag

重组FITC标记人VEGF165蛋白 Recombinant FITC-Labeled Human VEGF165 Protein,His-Avi Tag

产品说明书

FAQ

COA

已发表文献

 

性能参数

分子别名(Synonyms)

VEGF; VEGFA; MVCD1; VAS; VEGFMGC70609; VPF; RP1-261G23.1; MGC70609;VEGF-165

表达区间及表达系统(Source)

FITC-Labeled Human VEGF165 Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Ala27-Arg191.[Accession | P15692-4]

分子量大小(Molecular Weight)

The protein has a predicted MW of 22.2 kDa. Due to glycosylation, the protein migrates to 28-33 kDa under reduced (R) condition, 45-55 kDa under Non reducing (N) condition based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

活性(Activity)

ELISA Data: Immobilized FITC-Labeled Human VEGF165, His Tag at 0.2μg/ml (100μl/well) on the plate. Dose response curve for Anti-VEGF165 Antibody, hFc Tag with the EC50 of 22.3ng/ml determined by ELISA.

制剂(Formulation)

Lyophilized from 0.22 μm filtered solution in PBS (pH 7.4). Normally 8% trehalose is added as protectant before lyophilization.

重构方法(Reconstitution)

Centrifuge the tube before opening. Reconstituting to a concentration more than 100 μg/ml is recommended. Dissolve the lyophilized protein in distilled water.

 

储存条件

1.The product should be stored at -25~-15℃ for 1 year from date of receipt.

2.2-7 days, 2 ~ 8 °C under sterile conditions after reconstitution.

3.3 -6 months, -85~-65℃ under sterile conditions after reconstitution.

4.Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

 

性能参数

分子别名(Synonyms)

VEGF; VEGFA; MVCD1; VAS; VEGFMGC70609; VPF; RP1-261G23.1; MGC70609;VEGF-165

表达区间及表达系统(Source)

FITC-Labeled Human VEGF165 Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Ala27-Arg191.[Accession | P15692-4]

分子量大小(Molecular Weight)

The protein has a predicted MW of 22.2 kDa. Due to glycosylation, the protein migrates to 28-33 kDa under reduced (R) condition, 45-55 kDa under Non reducing (N) condition based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

活性(Activity)

ELISA Data: Immobilized FITC-Labeled Human VEGF165, His Tag at 0.2μg/ml (100μl/well) on the plate. Dose response curve for Anti-VEGF165 Antibody, hFc Tag with the EC50 of 22.3ng/ml determined by ELISA.

制剂(Formulation)

Lyophilized from 0.22 μm filtered solution in PBS (pH 7.4). Normally 8% trehalose is added as protectant before lyophilization.

重构方法(Reconstitution)

Centrifuge the tube before opening. Reconstituting to a concentration more than 100 μg/ml is recommended. Dissolve the lyophilized protein in distilled water.

 

储存条件

1.The product should be stored at -25~-15℃ for 1 year from date of receipt.

2.2-7 days, 2 ~ 8 °C under sterile conditions after reconstitution.

3.3 -6 months, -85~-65℃ under sterile conditions after reconstitution.

4.Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

重组FITC标记人NKG2D/CD314蛋白 Recombinant FITC-Labeled Human NKG2D/CD314 Protein,hFc-Flag Tag

重组FITC标记人NKG2D/CD314蛋白 Recombinant FITC-Labeled Human NKG2D/CD314 Protein,hFc-Flag Tag

产品说明书

FAQ

COA

已发表文献

 

性能参数

分子别名(Synonyms)

CD314; D12S2489E; KLR; NKG2-D; NKG2D

表达区间及表达系统(Source)

FITC-Labeled Human NKG2D/CD314 Protein is expressed from HEK293 with hFc tag and Flag tag at the N-Terminus. It contains Phe78-Val216.[Accession | P26718]

分子量大小(Molecular Weight)

The protein has a predicted MW of 43.4 kDa. Due to glycosylation, the protein migrates to 50-70 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

制剂(Formulation)

Supplied as 0.22μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

重组FITC标记人NKG2D/CD314蛋白 Recombinant FITC-Labeled Human NKG2D/CD314 Protein,hFc-Flag Tag

暂无内容

重组FITC标记人NKG2D/CD314蛋白 Recombinant FITC-Labeled Human NKG2D/CD314 Protein,hFc-Flag Tag

暂无内容

 

性能参数

分子别名(Synonyms)

CD314; D12S2489E; KLR; NKG2-D; NKG2D

表达区间及表达系统(Source)

FITC-Labeled Human NKG2D/CD314 Protein is expressed from HEK293 with hFc tag and Flag tag at the N-Terminus. It contains Phe78-Val216.[Accession | P26718]

分子量大小(Molecular Weight)

The protein has a predicted MW of 43.4 kDa. Due to glycosylation, the protein migrates to 50-70 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

制剂(Formulation)

Supplied as 0.22μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

重组FITC标记人NKG2D/CD314蛋白 Recombinant FITC-Labeled Human NKG2D/CD314 Protein,hFc-Flag Tag

暂无内容

重组FITC标记人NKG2D/CD314蛋白 Recombinant FITC-Labeled Human NKG2D/CD314 Protein,hFc-Flag Tag

暂无内容

FITC标记山羊抗人IgG Goat Anti-Human IgG(H+L)

FITC标记山羊抗人IgG Goat Anti-Human IgG(H+L)

产品说明书

FAQ

COA

已发表文献

产品信息

产品名称

产品编号

规格

FITC-AffiniPure Goat Anti-Human IgG(H+L)

34856JP60

100 μL

 

产品简介

本品是由FITC标记的山羊抗IgG(H+L),使用抗原偶联的琼脂糖微珠从山羊抗血清内亲和色谱纯化所得。免疫电泳和/或ELISA法检测显示本品特异性结合完整的IgG分子,也会与其他免疫球蛋白的轻链结合。可能会与其他物种免疫球蛋白发生交叉反应,但不会识别非免疫球蛋白类的血清蛋白。该荧光基团光谱性质同Alexa Fluor 488,Amax(最大激发波长)为492nm,Emax(最大发射波长)为520nm。

本品适合做单标实验,广泛应用于多种免疫学实验如免疫细胞化学(ICC),流式细胞术(FC)以及免疫组化(IHC)等。要做多标(multiple-labeling)实验,建议使用与相近物种的血清蛋白或者免疫球蛋白预先经过亲和吸附处理的二抗。

 

产品信息

抗体浓度(Antibody Concentration)

100 µL (0.75 mg/ml)

缓冲液(Buffer)

0.005M 磷酸钠,0.125M 氯化钠,pH7.6

稳定剂(Stabilizer)

7.5mg/ml BSA(无IgG,无蛋白酶)

防腐剂(Preservative)

0.025%叠氮化钠

 

产品应用

建议稀释浓度:1:25-1:100(for most application)

 

储存条件

-25 ~ -15℃分装保存,尽量避免反复冻融。

 

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作;

2)本产品仅作科研用途!

Ver.CN20240228

 

 

FITC标记山羊抗人IgG Goat Anti-Human IgG(H+L)

暂无内容

FITC标记山羊抗人IgG Goat Anti-Human IgG(H+L)

暂无内容

产品信息

产品名称

产品编号

规格

FITC-AffiniPure Goat Anti-Human IgG(H+L)

34856JP60

100 μL

 

产品简介

本品是由FITC标记的山羊抗IgG(H+L),使用抗原偶联的琼脂糖微珠从山羊抗血清内亲和色谱纯化所得。免疫电泳和/或ELISA法检测显示本品特异性结合完整的IgG分子,也会与其他免疫球蛋白的轻链结合。可能会与其他物种免疫球蛋白发生交叉反应,但不会识别非免疫球蛋白类的血清蛋白。该荧光基团光谱性质同Alexa Fluor 488,Amax(最大激发波长)为492nm,Emax(最大发射波长)为520nm。

本品适合做单标实验,广泛应用于多种免疫学实验如免疫细胞化学(ICC),流式细胞术(FC)以及免疫组化(IHC)等。要做多标(multiple-labeling)实验,建议使用与相近物种的血清蛋白或者免疫球蛋白预先经过亲和吸附处理的二抗。

 

产品信息

抗体浓度(Antibody Concentration)

100 µL (0.75 mg/ml)

缓冲液(Buffer)

0.005M 磷酸钠,0.125M 氯化钠,pH7.6

稳定剂(Stabilizer)

7.5mg/ml BSA(无IgG,无蛋白酶)

防腐剂(Preservative)

0.025%叠氮化钠

 

产品应用

建议稀释浓度:1:25-1:100(for most application)

 

储存条件

-25 ~ -15℃分装保存,尽量避免反复冻融。

 

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作;

2)本产品仅作科研用途!

Ver.CN20240228

 

 

FITC标记山羊抗人IgG Goat Anti-Human IgG(H+L)

暂无内容

FITC标记山羊抗人IgG Goat Anti-Human IgG(H+L)

暂无内容

FITC标记山羊抗兔IgG抗体 FITC山羊抗兔IgG抗体|FITC Goat Anti-Rabbit IgG

FITC标记山羊抗兔IgG抗体 FITC山羊抗兔IgG抗体|FITC Goat Anti-Rabbit IgG

产品说明书

FAQ

COA

已发表文献

产品描述

 

本品是由FITC标记的山羊抗兔IgG(H+L),使用抗原偶联的琼脂糖微珠从山羊抗血清内亲和色谱纯化所得。免疫电泳和/或ELISA法检测显示本品特异性结合完整的兔IgG分子,也会与其他兔免疫球蛋白的轻链结合。可能会与其他物种免疫球蛋白发生交叉反应,但不会识别非免疫球蛋白类的血清蛋白。该荧光基团光谱性质同Alexa Fluor 488,Amax(最大激发波长)为492nm,Emax(最大发射波长)为520nm。

本品适合做单标实验,广泛应用于多种免疫学实验如免疫细胞化学(ICC),流式细胞术(FC)以及免疫组化(IHC)等。要做多标(multiple-labeling)实验,建议使用与相近物种的血清蛋白或者免疫球蛋白预先经过亲和吸附处理的二抗。

产品应用

建议稀释浓度:1:25-1:100(For most application)

产品性质 

抗体浓度(Antibody Concentration)

100µl (0.75mg/ml)

缓冲液(Buffer)

0.005M 磷酸钠,0.125M 氯化钠, pH 7.6

稳定剂(Stabilizer)

7.5mg/ml BSA(无IgG,蛋白酶),50% 甘油

荧光素(Fluorophore)

FITC-isomer 1, Amax =492nm, Emax=520nm

防腐剂(Preservative)

0.025% 叠氮化钠

原料来源(Source of Material)

Jackson Immunoresearch 111-095-003

运输与保存方法

冰袋运输。-20℃分装保存,尽量避免反复冻融。有效期1年。

注意事项

1)本品含叠氮化钠,对人体有害,请注意适当防护。

2)为了您的安全和健康,请穿实验服并戴一次性手套操作。

3)本产品仅作科研用途!

 

FITC标记山羊抗兔IgG抗体 FITC山羊抗兔IgG抗体|FITC Goat Anti-Rabbit IgG

暂无内容

[1] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[2] Bao L, Dou G, Tian R, et al. Engineered neutrophil apoptotic bodies ameliorate myocardial infarction by promoting macrophage efferocytosis and inflammation resolution. Bioact Mater. 2021;9:183-197. Published 2021 Aug 27. doi:10.1016/j.bioactmat.2021.08.008(IF:14.593)
[3] Shi X, Cheng Y, Wang J, et al. 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics. 2020;10(23):10652-10664. Published 2020 Aug 29. doi:10.7150/thno.47933(IF:11.556)
[4] Li Z, Wu M, Liu S, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration [published online ahead of print, 2022 May 10]. Mol Ther. 2022;S1525-0016(22)00304-5. doi:10.1016/j.ymthe.2022.05.006(IF:11.454)
[5] Chen H, Wang X, Wang J, et al. In vitroadipogenesis and long-term adipocyte culture in adipose tissue-derived cell banks. Biofabrication. 2021;13(3):10.1088/1758-5090/ac0610. Published 2021 Jul 5. doi:10.1088/1758-5090/ac0610(IF:10.020)
[6] Wang Y, Lin YX, Qiao SL, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153-163. doi:10.1016/j.biomaterials.2016.09.034(IF:8.387)
[7] Yuan J, Jiang X, Lan H, et al. Multi-Omics Analysis of the Therapeutic Value of MAL2 Based on Data Mining in Human Cancers. Front Cell Dev Biol. 2022;9:736649. Published 2022 Jan 17. doi:10.3389/fcell.2021.736649(IF:6.684)
[8] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[9] Li Z, You L, Yan D, James AA, Huang Y, Tan A. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genet. 2018;14(2):e1007245. Published 2018 Feb 23. doi:10.1371/journal.pgen.1007245(IF:5.540)
[10] Tao Y, Yue M, Lv C, et al. Pharmacological activation of ERβ by arctigenin maintains the integrity of intestinal epithelial barrier in inflammatory bowel diseases. FASEB J. 2020;34(2):3069-3090. doi:10.1096/fj.201901638RR(IF:5.391)
[11] Li Z, Liu S, Fu T, Peng Y, Zhang J. Microtubule destabilization caused by silicate via HDAC6 activation contributes to autophagic dysfunction in bone mesenchymal stem cells. Stem Cell Res Ther. 2019;10(1):351. Published 2019 Nov 27. doi:10.1186/s13287-019-1441-4(IF:4.627)
[12] Li Z, You L, Zhang Q, Yu Y, Tan A. A Targeted In-Fusion Expression System for Recombinant Protein Production in Bombyx mori. Front Genet. 2022;12:816075. Published 2022 Jan 4. doi:10.3389/fgene.2021.816075(IF:4.599)
[13] Zheng C, Wu SM, Lian H, et al. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways. J Cell Mol Med. 2019;23(3):1963-1975. doi:10.1111/jcmm.14098(IF:4.302)
[14] Wang H, Zhang Z, Guan J, Lu W, Zhan C. Unraveling GLUT-mediated transcytosis pathway of glycosylated nanodisks. Asian J Pharm Sci. 2021;16(1):120-128. doi:10.1016/j.ajps.2020.07.001(IF:3.968)
[15] Chen L, Lv L, Zhang L, et al. Metformin ameliorates bladder dysfunction in a rat model of partial bladder outlet obstruction. Am J Physiol Renal Physiol. 2021;320(5):F838-F858. doi:10.1152/ajprenal.00625.2020(IF:3.377)
[16] Yang LY, Liu XF, Yang Y, et al. Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities. Acta Pharmacol Sin. 2017;38(1):56-68. doi:10.1038/aps.2016.89(IF:3.166)
[17] Wang Y, Jiang C, Cong S, Guo C, Yan Z. Extracellular matrix deposited by Wharton's jelly mesenchymal stem cells enhances cell expansion and tissue specific lineage potential. Am J Transl Res. 2018;10(11):3465-3480. Published 2018 Nov 15. (IF:3.061)
[18] Xue Z, Zhuang J, Bai H, et al. VDR mediated HSD3B1 to regulate lipid metabolism and promoted testosterone synthesis in mouse Leydig cells. Genes Genomics. 2022;44(5):583-592. doi:10.1007/s13258-022-01232-1(IF:1.839)

产品描述

 

本品是由FITC标记的山羊抗兔IgG(H+L),使用抗原偶联的琼脂糖微珠从山羊抗血清内亲和色谱纯化所得。免疫电泳和/或ELISA法检测显示本品特异性结合完整的兔IgG分子,也会与其他兔免疫球蛋白的轻链结合。可能会与其他物种免疫球蛋白发生交叉反应,但不会识别非免疫球蛋白类的血清蛋白。该荧光基团光谱性质同Alexa Fluor 488,Amax(最大激发波长)为492nm,Emax(最大发射波长)为520nm。

本品适合做单标实验,广泛应用于多种免疫学实验如免疫细胞化学(ICC),流式细胞术(FC)以及免疫组化(IHC)等。要做多标(multiple-labeling)实验,建议使用与相近物种的血清蛋白或者免疫球蛋白预先经过亲和吸附处理的二抗。

产品应用

建议稀释浓度:1:25-1:100(For most application)

产品性质 

抗体浓度(Antibody Concentration)

100µl (0.75mg/ml)

缓冲液(Buffer)

0.005M 磷酸钠,0.125M 氯化钠, pH 7.6

稳定剂(Stabilizer)

7.5mg/ml BSA(无IgG,蛋白酶),50% 甘油

荧光素(Fluorophore)

FITC-isomer 1, Amax =492nm, Emax=520nm

防腐剂(Preservative)

0.025% 叠氮化钠

原料来源(Source of Material)

Jackson Immunoresearch 111-095-003

运输与保存方法

冰袋运输。-20℃分装保存,尽量避免反复冻融。有效期1年。

注意事项

1)本品含叠氮化钠,对人体有害,请注意适当防护。

2)为了您的安全和健康,请穿实验服并戴一次性手套操作。

3)本产品仅作科研用途!

 

FITC标记山羊抗兔IgG抗体 FITC山羊抗兔IgG抗体|FITC Goat Anti-Rabbit IgG

暂无内容

[1] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[2] Bao L, Dou G, Tian R, et al. Engineered neutrophil apoptotic bodies ameliorate myocardial infarction by promoting macrophage efferocytosis and inflammation resolution. Bioact Mater. 2021;9:183-197. Published 2021 Aug 27. doi:10.1016/j.bioactmat.2021.08.008(IF:14.593)
[3] Shi X, Cheng Y, Wang J, et al. 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics. 2020;10(23):10652-10664. Published 2020 Aug 29. doi:10.7150/thno.47933(IF:11.556)
[4] Li Z, Wu M, Liu S, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration [published online ahead of print, 2022 May 10]. Mol Ther. 2022;S1525-0016(22)00304-5. doi:10.1016/j.ymthe.2022.05.006(IF:11.454)
[5] Chen H, Wang X, Wang J, et al. In vitroadipogenesis and long-term adipocyte culture in adipose tissue-derived cell banks. Biofabrication. 2021;13(3):10.1088/1758-5090/ac0610. Published 2021 Jul 5. doi:10.1088/1758-5090/ac0610(IF:10.020)
[6] Wang Y, Lin YX, Qiao SL, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153-163. doi:10.1016/j.biomaterials.2016.09.034(IF:8.387)
[7] Yuan J, Jiang X, Lan H, et al. Multi-Omics Analysis of the Therapeutic Value of MAL2 Based on Data Mining in Human Cancers. Front Cell Dev Biol. 2022;9:736649. Published 2022 Jan 17. doi:10.3389/fcell.2021.736649(IF:6.684)
[8] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[9] Li Z, You L, Yan D, James AA, Huang Y, Tan A. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genet. 2018;14(2):e1007245. Published 2018 Feb 23. doi:10.1371/journal.pgen.1007245(IF:5.540)
[10] Tao Y, Yue M, Lv C, et al. Pharmacological activation of ERβ by arctigenin maintains the integrity of intestinal epithelial barrier in inflammatory bowel diseases. FASEB J. 2020;34(2):3069-3090. doi:10.1096/fj.201901638RR(IF:5.391)
[11] Li Z, Liu S, Fu T, Peng Y, Zhang J. Microtubule destabilization caused by silicate via HDAC6 activation contributes to autophagic dysfunction in bone mesenchymal stem cells. Stem Cell Res Ther. 2019;10(1):351. Published 2019 Nov 27. doi:10.1186/s13287-019-1441-4(IF:4.627)
[12] Li Z, You L, Zhang Q, Yu Y, Tan A. A Targeted In-Fusion Expression System for Recombinant Protein Production in Bombyx mori. Front Genet. 2022;12:816075. Published 2022 Jan 4. doi:10.3389/fgene.2021.816075(IF:4.599)
[13] Zheng C, Wu SM, Lian H, et al. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways. J Cell Mol Med. 2019;23(3):1963-1975. doi:10.1111/jcmm.14098(IF:4.302)
[14] Wang H, Zhang Z, Guan J, Lu W, Zhan C. Unraveling GLUT-mediated transcytosis pathway of glycosylated nanodisks. Asian J Pharm Sci. 2021;16(1):120-128. doi:10.1016/j.ajps.2020.07.001(IF:3.968)
[15] Chen L, Lv L, Zhang L, et al. Metformin ameliorates bladder dysfunction in a rat model of partial bladder outlet obstruction. Am J Physiol Renal Physiol. 2021;320(5):F838-F858. doi:10.1152/ajprenal.00625.2020(IF:3.377)
[16] Yang LY, Liu XF, Yang Y, et al. Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities. Acta Pharmacol Sin. 2017;38(1):56-68. doi:10.1038/aps.2016.89(IF:3.166)
[17] Wang Y, Jiang C, Cong S, Guo C, Yan Z. Extracellular matrix deposited by Wharton's jelly mesenchymal stem cells enhances cell expansion and tissue specific lineage potential. Am J Transl Res. 2018;10(11):3465-3480. Published 2018 Nov 15. (IF:3.061)
[18] Xue Z, Zhuang J, Bai H, et al. VDR mediated HSD3B1 to regulate lipid metabolism and promoted testosterone synthesis in mouse Leydig cells. Genes Genomics. 2022;44(5):583-592. doi:10.1007/s13258-022-01232-1(IF:1.839)

重组FITC标记的人MSLN/间皮蛋白(hFc标签) FITC-Labeled Human MSLN/Mesothelin Proteing

重组FITC标记的人MSLN/间皮蛋白(hFc标签) FITC-Labeled Human MSLN/Mesothelin Proteing

产品说明书

FAQ

COA

已发表文献

 

性能参数

分子别名(Synonyms)

Mesothelin;MSLN; MPF; SMR

表达区间及表达系统(Source)

FITC-Labeled Human MSLN/Mesothelin Protein is expressed from HEK293 with hFc tag at the C-Terminus. It contains Glu296-Gly580.[Accession | Q13421-2]

分子量大小(Molecular Weight)

The protein has a predicted MW of 59 kDa. Due to glycosylation, the protein migrates to 68-75 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE

制剂(Formulation)

Supplied as 0.22μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

 

性能参数

分子别名(Synonyms)

Mesothelin;MSLN; MPF; SMR

表达区间及表达系统(Source)

FITC-Labeled Human MSLN/Mesothelin Protein is expressed from HEK293 with hFc tag at the C-Terminus. It contains Glu296-Gly580.[Accession | Q13421-2]

分子量大小(Molecular Weight)

The protein has a predicted MW of 59 kDa. Due to glycosylation, the protein migrates to 68-75 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE

制剂(Formulation)

Supplied as 0.22μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

产品说明书

FAQ

COA

已发表文献

产品描述

Annexin V-FITC/PI细胞凋亡检测试剂盒是用FITC标记的Annexin V作为探针,来检测细胞早期凋亡的发生。

其检测原理为:在正常的活细胞中,磷脂酰丝氨酸(phosphotidylserine,PS)位于细胞膜的内侧,但在早期凋亡的细胞中,PS 从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-Ⅴ(膜联蛋白-V)是一种分子量为35-36 kDaCa2+ 依赖性磷脂结合蛋白,能与PS高亲和力结合可通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。

另外,本试剂盒中还提供了碘化丙啶(Propidium Iodide,PI)用来区分存活的早期细胞和坏死或晚期凋亡细胞。PI是一种核酸染料,它不能透过正常细胞或早期凋亡细胞的完整的细胞膜,但可以透过凋亡晚期和坏死细胞的细胞膜而使细胞核染红。因此,将Annexin V与PI联合使用时,PI 则被排除在活细胞(Annexin V-/PI-)和早期凋亡细胞(Annexin V+/PI-)之外,而晚期凋亡细胞和坏死细胞同时被FITC 和PI 结合染色呈现双阳性(Annexin V+/PI+)。

本试剂盒可用于流式细胞仪、荧光显微镜进行检测。

 

产品组分

编号

组分

产品编号/规格

40302ES20(20T)

40302ES50(50T)

40302ES60(100T)

40302-A

Annexin V-FITC

100 μL

250 μL

500 μL

40302-B

PI Staining Solution

200 μL

500 μL

1.0 mL

40302-C

1×Binding Buffer

10 mL

25 mL

50 mL

 

运输与保存方法

冰袋(wet ice)运输。-20℃避光保存,避免反复冻融,一年有效。

【注】:如果需要在短时间内多次重复使用,可以在4℃避光保存,半年有效。

 

注意事项

1)由于细胞凋亡是一个快速的过程,建议样品在染色后1小时之内进行分析。

2) 对于贴壁细胞,消化是一个关键步骤。贴壁细胞诱导细胞凋亡时如有漂浮细胞,需收集漂浮细胞和贴壁细胞后合并染色。处理贴壁细胞时要小心操作,尽量避免人为的损伤。胰酶消化时间过短,细胞需要用力吹打才能脱落,容易造成细胞膜的损伤;PI摄入过多,消化时间过长,细胞膜同样易造成损伤,甚至会影响细胞膜上磷脂酰丝氨酸与Annexin V-FITC的结合。消化时将胰酶铺满孔板底后,轻摇使胰酶与细胞充分接触,然后倒掉大部分胰酶,利用剩余少量胰酶再消化一段时间,待细胞间空隙增大,瓶底呈花斑状即可终止。在消化液中尽量不用EDTA,EDTA会影响Annexin V与PS的结合。

3)如果样品来源于血液,请务必除去血液中的血小板。因为血小板含有PS,能与Annexin V结合,从而干扰实验结果。可以使用含有EDTA的缓冲剂并在200 g离心洗去血小板。

4)试剂在开盖前请短暂离心,将盖内壁上的液体甩至管底,避免开盖时液体洒落。

5Annexin V-FITC和PI是光敏物质,在操作时请注意避光。

6)本产品仅作科研用途!

 

操作方法

1.1 样品染色

1)悬浮细胞300 g,4℃离心5 min收集细胞。

贴壁细胞:用不含EDTA的胰酶消化后,300 g,4℃离心5 min收集细胞。胰酶消化时间不宜过长,以防引起假阳性。

2)用预冷的PBS洗涤细胞2次,每次均需300 g,4℃离心5 min。收集1~5×105细胞。

3)吸弃PBS,加入100 μL 1×Binding Buffer重悬细胞。

4)加入5 μL Annexin V-FITC和10 μLPI Staining Solution,轻轻混匀。

5)避光、室温反应10-15 min。

6)加入400 μL 1×Binding Buffer,混匀后放置于冰上,样品在1小时内用流式细胞仪或荧光显微镜检测。

【注】:为了避免洗涤细胞时损失细胞,在吸液时可以用大的Tip头套上小的Tip头吸液。

1.2 样品分析

A.流式细胞仪分析:

FITC最大激发波长为488 nm,最大发射波长525 nm,FITC的绿色荧光在FL1通道检测;PI-DNA复合物的最大激发波长为535 nm,最大发射波长为615 nm,PI的红色荧光在FL2或FL3通道检测。用CellQuest等软件进行分析,绘制双色散点图(two-color dot plot),FITC为横坐标,PI为纵坐标。典型的实验中,细胞可以分成三个亚群,活细胞仅有很低强度的背景荧光,早期凋亡细胞仅有较强的绿色荧光,晚期凋亡细胞有绿色和红色荧光双重染色。

B.荧光显微镜分析:

1)滴一滴用Annexin V-FITC/PI双染的细胞悬液于载玻片上,并用盖玻片盖上细胞。

【注】:对于贴壁细胞,可直接用盖玻片培养细胞并诱导细胞凋亡。

2)在荧光显微镜下用双色滤光片观察。Annexin V-FITC荧光信号呈绿色,PI荧光信号呈红色。

 

相关产品

产品名称

货号

规格

Cell Cycle and Apoptosis Analysis Kit

细胞周期与细胞凋亡检测试剂盒

40301ES50

50 T

40301ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

Annexin V-EGFP/PI Apoptosis Detection Kit

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 647/PI Apoptosis Detection Kit

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 488/PI Apoptosis Detection Kit

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

Annexin V-PE/7-AAD细胞凋亡检测试剂盒

Annexin V-PE/7-AAD Apoptosis Detection Kit

40310ES20

20 T

40310ES50

50 T

40310ES60

100 T

 

 

HB220609

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A: Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物)含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

Q:40302ES Annexin V-FITC/PI 细胞凋亡检测试剂盒里的PI的浓度是多少呢?

A:20ug/ml。

Q:实验结果如何判断?

A:活细胞(Annexin V-/PI-)

  早期凋亡细胞(Annexin V+/PI-)

  晚期凋亡细胞和坏死细胞呈现双阳性(Annexin V+/PI+)

  裸核(Annexin V-/PI+)

Q: Annexin VTUNEL有什么区别?

A:末端脱氧核苷酸转移酶 dUTP 缺口末端标记 (TUNEL) 是一种染色方法,用于识别细胞内 DNA 片段化位点——晚期细胞凋亡的标志性特征。 它使用酶末端脱氧核苷酸转移酶 (TdT) 将修饰的 dNTP(例如 dUTP)连接到片段化 DNA 链的 3'-羟基末端。 dNTPs 通常用荧光团修饰以促进量化和/或可视化。

Annexin V 染色通过结合由于细胞膜不对称性丧失而暴露在细胞外的 PS 残基来识别细胞凋亡的早期阶段。 Annexin V 通常用 FITC 等荧光团标记,以促进凋亡细胞的检测。

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

 

 

[1] Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med. 2022;28(2):272-282. doi:10.1038/s41591-021-01645-7(IF:53.440)
[2] Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247-258. doi:10.1038/s41422-020-0389-3(IF:25.617)
[3] Wang Z, Yu L, Wang Y, et al. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. Adv Sci (Weinh). 2022;9(8):e2104793. doi:10.1002/advs.202104793(IF:16.806)
[4] Zhang M, Shao W, Yang T, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication [published online ahead of print, 2022 Jun 4]. Adv Sci (Weinh). 2022;e2201135. doi:10.1002/advs.202201135(IF:16.806)
[5] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[6] Li Y, Cui K, Zhang Q, et al. FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death Differ. 2021;28(7):2112-2125. doi:10.1038/s41418-021-00739-6(IF:15.828)
[7] Li X, Yong T, Wei Z, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat Commun. 2022;13(1):2794. Published 2022 May 19. doi:10.1038/s41467-022-30306-7(IF:14.919)
[8] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[9] Wang XS, Zeng JY, Li MJ, Li QR, Gao F, Zhang XZ. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano. 2020;14(8):9848-9860. doi:10.1021/acsnano.0c02516(IF:14.588)
[10] Wang M, Zhang L, Cai Y, et al. Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy [published online ahead of print, 2020 Nov 17]. ACS Nano. 2020;10.1021/acsnano.0c07610. doi:10.1021/acsnano.0c07610(IF:14.588)
[11] Deng RH, Zou MZ, Zheng D, et al. Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy. ACS Nano. 2019;13(8):8618-8629. doi:10.1021/acsnano.9b02993(IF:13.903)
[12] Zhao H, Xu J, Huang W, et al. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano. 2019;13(6):6647-6661. doi:10.1021/acsnano.9b00972(IF:13.903)
[13] Zhang C, Gao F, Wu W, et al. Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS Nano. 2019;13(10):11249-11262. doi:10.1021/acsnano.9b04315(IF:13.903)
[14] Wan SS, Cheng Q, Zeng X, Zhang XZ. A Mn(III)-Sealed Metal-Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics. ACS Nano. 2019;13(6):6561-6571. doi:10.1021/acsnano.9b00300(IF:13.903)
[15] Wei JL, Wu SY, Yang YS, et al. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002383. doi:10.1136/jitc-2021-002383(IF:13.751)
[16] Wang L, Qin W, Xu W, et al. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin A Expression. Small. 2021;17(40):e2102932. doi:10.1002/smll.202102932(IF:13.281)
[17] Wan SS, Zhang L, Zhang XZ. An ATP-Regulated Ion Transport Nanosystem for Homeostatic Perturbation Therapy and Sensitizing Photodynamic Therapy by Autophagy Inhibition of Tumors. ACS Cent Sci. 2019;5(2):327-340. doi:10.1021/acscentsci.8b00822(IF:12.837)
[18] Sun D, Zou Y, Song L, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 2022;12(1):378-393. doi:10.1016/j.apsb.2021.06.005(IF:11.614)
[19] Yang Y, Hu D, Lu Y, et al. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B. 2022;12(6):2710-2730. doi:10.1016/j.apsb.2021.08.021(IF:11.614)
[20] Hu Q, Jia L, Zhang X, Zhu A, Wang S, Xie X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm Sin B. 2022;12(1):394-405. doi:10.1016/j.apsb.2021.05.021(IF:11.614)
[21] Wang M, Xu Y, Zhang Y, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics. 2021;11(10):5010-5027. Published 2021 Mar 5. doi:10.7150/thno.55645(IF:11.556)
[22] Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics. 2021;11(13):6477-6490. Published 2021 Apr 19. doi:10.7150/thno.55708(IF:11.556)
[23] Fan Q, Zuo J, Tian H, et al. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J Exp Clin Cancer Res. 2022;41(1):162. Published 2022 May 3. doi:10.1186/s13046-022-02372-8(IF:11.161)
[24] Lei X, Cao K, Chen Y, et al. Nuclear Transglutaminase 2 interacts with topoisomerase II⍺ to promote DNA damage repair in lung cancer cells. J Exp Clin Cancer Res. 2021;40(1):224. Published 2021 Jul 5. doi:10.1186/s13046-021-02009-2(IF:11.161)
[25] Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. J Hazard Mater. 2021;420:126697. doi:10.1016/j.jhazmat.2021.126697(IF:10.588)
[26] Zhang C, Peng SY, Hong S, et al. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials. 2020;245:119986. doi:10.1016/j.biomaterials.2020.119986(IF:10.317)
[27] Zhang L, Cheng Q, Li C, Zeng X, Zhang XZ. Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials. 2020;248:120029. doi:10.1016/j.biomaterials.2020.120029(IF:10.317)
[28] Zhang C, Zheng DW, Li CX, et al. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials. 2019;223:119472. doi:10.1016/j.biomaterials.2019.119472(IF:10.273)
[29] Cheng Q, Yu W, Ye J, et al. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials. 2019;224:119500. doi:10.1016/j.biomaterials.2019.119500(IF:10.273)
[30] Zhong H, Huang PY, Yan P, et al. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater. 2021;10(19):e2100770. doi:10.1002/adhm.202100770(IF:9.933)
[31] Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release. 2022;341:892-903. doi:10.1016/j.jconrel.2021.12.026(IF:9.776)
[32] Hu X, Tian H, Jiang W, Song A, Li Z, Luan Y. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. Small. 2018;14(52):e1802994. doi:10.1002/smll.201802994(IF:9.598)
[33] Yao Y, Li P, He J, Wang D, Hu J, Yang X. Albumin-Templated Bi2Se3-MnO2 Nanocomposites with Promoted Catalase-Like Activity for Enhanced Radiotherapy of Cancer. ACS Appl Mater Interfaces. 2021;13(24):28650-28661. doi:10.1021/acsami.1c05669(IF:9.229)
[34] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[35] Liu J, Zhou B, Guo Y, et al. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis [published online ahead of print, 2021 Jun 16]. ACS Appl Mater Interfaces. 2021;10.1021/acsami.1c06380. doi:10.1021/acsami.1c06380(IF:9.229)
[36] Ye R, Zheng Y, Chen Y, et al. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS Appl Mater Interfaces. 2021;13(47):55902-55912. doi:10.1021/acsami.1c17618(IF:9.229)
[37] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[38] Sun J, Liu J, Gao C, et al. Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater. 2022;140:573-585. doi:10.1016/j.actbio.2021.12.023(IF:8.947)
[39] Gao J, Liu J, Meng Z, et al. Ultrasound-assisted C3F8-filled PLGA nanobubbles for enhanced FGF21 delivery and improved prophylactic treatment of diabetic cardiomyopathy. Acta Biomater. 2021;130:395-408. doi:10.1016/j.actbio.2021.06.015(IF:8.947)
[40] Xia F, Hou W, Liu Y, et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials. 2018;170:1-11. doi:10.1016/j.biomaterials.2018.03.048(IF:8.806)
[41] Xu M, Zhao X, Zhao S, et al. Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett. 2021;520:282-294. doi:10.1016/j.canlet.2021.08.001(IF:8.679)
[42] Hu XK, Rao SS, Tan YJ, et al. Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Theranostics. 2020;10(17):7710-7729. Published 2020 Jun 19. doi:10.7150/thno.45858(IF:8.579)
[43] Wu D, Zhu ZQ, Tang HX, et al. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Theranostics. 2020;10(21):9808-9829. Published 2020 Aug 2. doi:10.7150/thno.43631(IF:8.579)
[44] Hong Y, Han Y, Wu J, et al. Chitosan modified Fe3O4/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics. 2020;10(12):5565-5577. Published 2020 Apr 15. doi:10.7150/thno.43569(IF:8.579)
[45] Ding MH, Wang Z, Jiang L, et al. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials. 2015;56:165-178. doi:10.1016/j.biomaterials.2015.03.058(IF:8.557)
[46] Liang H, Zhou Z, Luo R, et al. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8(18):5059-5071. Published 2018 Oct 5. doi:10.7150/thno.28344(IF:8.537)
[47] Zhou Z, Zhang Q, Zhang M, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics. 2018;8(17):4604-4619. Published 2018 Sep 9. doi:10.7150/thno.26889(IF:8.537)
[48] Qi HZ, Ye YL, Suo Y, et al. Wnt/β-catenin signaling mediates the abnormal osteogenic and adipogenic capabilities of bone marrow mesenchymal stem cells from chronic graft-versus-host disease patients. Cell Death Dis. 2021;12(4):308. Published 2021 Mar 23. doi:10.1038/s41419-021-03570-6(IF:8.469)
[49] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[50] Xia J, Zhang J, Wang L, et al. Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis. 2021;12(9):833. Published 2021 Sep 4. doi:10.1038/s41419-021-04126-4(IF:8.469)
[51] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[52] Zhang D, Zhang J, Li Q, Song A, Li Z, Luan Y. Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability. ACS Appl Mater Interfaces. 2019;11(36):32633-32646. doi:10.1021/acsami.9b09568(IF:8.456)
[53] Zhang J, Zhang D, Li Q, et al. Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS Appl Mater Interfaces. 2019;11(46):42904-42916. doi:10.1021/acsami.9b13556(IF:8.456)
[54] Ke R, Zhen X, Wang HS, et al. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307-319. doi:10.1016/j.jcis.2021.12.009(IF:8.128)
[55] Jiang W, Zhang H, Wu J, et al. CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo-Photothermal Therapy. ACS Appl Mater Interfaces. 2018;10(40):34513-34523. doi:10.1021/acsami.8b13487(IF:8.097)
[56] Zhang A, Pan S, Zhang Y, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9(12):3443-3458. Published 2019 May 24. doi:10.7150/thno.33266(IF:8.063)
[57] Liu Y, Pan Y, Cao W, et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2– based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 2019;9(23):6867-6884. Published 2019 Sep 21. doi:10.7150/thno.37586(IF:8.063)
[58] Zhang C, Zhou Z, Zhi X, et al. Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTP1. Theranostics. 2015;5(2):134-149. Published 2015 Jan 1. doi:10.7150/thno.10363(IF:8.022)
[59] Jiang K, Zhao D, Ye R, et al. Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy. Nanoscale. 2022;14(5):1834-1846. Published 2022 Feb 3. doi:10.1039/d1nr06353g(IF:7.790)
[60] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[61] Chen J , Li S , Liu X , et al. Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. Nanoscale. 2021;13(22):9989-10001. doi:10.1039/d1nr01552d(IF:7.790)
[62] Gao R, Liu D, Guo W, et al. Meprin-α (Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol. 2020;177(12):2872-2885. doi:10.1111/bph.15019(IF:7.730)
[63] Yang X, Gao F, Zhang W, et al. "Star" miR-34a and CXCR4 antagonist based nanoplex for binary cooperative migration treatment against metastatic breast cancer. J Control Release. 2020;326:615-627. doi:10.1016/j.jconrel.2020.07.029(IF:7.727)
[64] Wu T, Liang X, Liu X, et al. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 2020;17(1):30. Published 2020 Jul 11. doi:10.1186/s12989-020-00363-1(IF:7.546)
[65] Yan Y, Zhao W, Liu W, et al. CCL19 enhances CD8+ T-cell responses and accelerates HBV clearance. J Gastroenterol. 2021;56(8):769-785. doi:10.1007/s00535-021-01799-8(IF:7.527)
[66] Fan RZ, Chen L, Su T, et al. Discovery of 8,9-seco-ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J Med Chem. 2021;64(14):9926-9942. doi:10.1021/acs.jmedchem.1c00166(IF:7.446)
[67] Xu M, Zhao C, Zhu B, et al. Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment Assembling Approach. J Med Chem. 2021;64(4):2010-2023. doi:10.1021/acs.jmedchem.0c01521(IF:7.446)
[68] Hou W, Zhao X, Qian X, et al. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale. 2016;8(1):104-116. doi:10.1039/c5nr06842h(IF:7.394)
[69] Gao W, Liu Y, Zhang H, Wang Z. Electrochemiluminescence Biosensor for Nucleolin Imaging in a Single Tumor Cell Combined with Synergetic Therapy of Tumor. ACS Sens. 2020;5(4):1216-1222. doi:10.1021/acssensors.0c00292(IF:7.333)
[70] Yin M, Zhang J, Zeng X, Zhang H, Gao Y. Target identification and drug discovery by data-driven hypothesis and experimental validation in ovarian endometriosis. Fertil Steril. 2021;116(2):478-492. doi:10.1016/j.fertnstert.2021.01.027(IF:7.329)
[71] Chen CY, Du W, Rao SS, et al. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater. 2020;111:208-220. doi:10.1016/j.actbio.2020.05.020(IF:7.242)
[72] Shang D, Sun D, Shi C, et al. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. Aging Cell. 2020;19(5):e13145. doi:10.1111/acel.13145(IF:7.238)
[73] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[74] Zhou J , Li T , Zhang C , Xiao J , Cui D , Cheng Y . Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. Nanoscale. 2018;10(20):9707-9719. doi:10.1039/c8nr00994e(IF:7.233)
[75] Chen MM, Hu ZL, Ding JH, Du RH, Hu G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson's disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav Immun. 2021;95:310-320. doi:10.1016/j.bbi.2021.04.003(IF:7.217)
[76] Tian Y, Gao S, Wu M, et al. Tobacco Mosaic Virus-Based 1D Nanorod-Drug Carrier via the Integrin-Mediated Endocytosis Pathway. ACS Appl Mater Interfaces. 2016;8(17):10800-10807. doi:10.1021/acsami.6b02801(IF:7.145)
[77] Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D. MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces. 2016;8(2):1447-1457. doi:10.1021/acsami.5b10772(IF:7.145)
[78] Zheng Y, Liu L, Wang Y, et al. Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma. Cell Biosci. 2021;11(1):63. Published 2021 Mar 31. doi:10.1186/s13578-021-00575-8(IF:7.133)
[79] Wang H, Liu YC, Zhu CY, et al. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. J Exp Clin Cancer Res. 2020;39(1):278. Published 2020 Dec 9. doi:10.1186/s13046-020-01792-8(IF:7.068)
[80] Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2020;39(1):149. Published 2020 Aug 3. doi:10.1186/s13046-020-01648-1(IF:7.068)
[81] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[82] Chen Q , Chen Y , Sun Y , et al. Leukocyte-mimicking Pluronic-lipid nanovesicle hybrids inhibit the growth and metastasis of breast cancer. Nanoscale. 2019;11(12):5377-5394. doi:10.1039/c8nr08936a(IF:6.970)
[83] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[84] Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600. Published 2021 Jun 17. doi:10.2147/JIR.S304336(IF:6.922)
[85] Liu J, Gao J, Zhang A, et al. Carbon nanocage-based nanozyme as an endogenous H2O2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 2020;12(42):21674-21686. doi:10.1039/d0nr05945e(IF:6.895)
[86] Zhang Q, Huang Y, Yang R, Mu J, Zhou Z, Sun M. Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomater Sci. 2022;10(13):3637-3646. Published 2022 Jun 28. doi:10.1039/d1bm02022f(IF:6.843)
[87] Zhang L, Zhao J, Dong J, Liu Y, Xuan K, Liu W. GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther. 2021;12(1):225. Published 2021 Apr 6. doi:10.1186/s13287-021-02235-7(IF:6.832)
[88] Du X, Chen S, Cui H, et al. Circular RNA hsa_circ_0083756 promotes intervertebral disc degeneration by sponging miR-558 and regulating TREM1 expression. Cell Prolif. 2022;55(4):e13205. doi:10.1111/cpr.13205(IF:6.831)
[89] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[90] Kang RR, Sun Q, Chen KG, et al. Resveratrol prevents benzo(a)pyrene-induced disruption of mitochondrial homeostasis via the AMPK signaling pathway in primary cultured neurons [published correction appears in Environ Pollut. 2020 Oct;265(Pt A):115331]. Environ Pollut. 2020;261:114207. doi:10.1016/j.envpol.2020.114207(IF:6.793)
[91] Huang D, Guo Y, Li X, et al. Vitamin D3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai [published online ahead of print, 2021 Oct 12]. Cell Biol Toxicol. 2021;10.1007/s10565-021-09647-4. doi:10.1007/s10565-021-09647-4(IF:6.691)
[92] Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers Erlotinib Resistance Through Upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biol. 2021;9:677860. Published 2021 Jul 21. doi:10.3389/fcell.2021.677860(IF:6.684)
[93] Tang X, Sun Y, Xu C, et al. Caffeine Induces Autophagy and Apoptosis in Auditory Hair Cells via the SGK1/HIF-1α Pathway. Front Cell Dev Biol. 2021;9:751012. Published 2021 Nov 16. doi:10.3389/fcell.2021.751012(IF:6.684)
[94] Hu B, Zeng LP, Yang XL, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698. Published 2017 Nov 30. doi:10.1371/journal.ppat.1006698(IF:6.608)
[95] Jin T, Lin J, Gong Y, et al. iPLA2β Contributes to ER Stress-Induced Apoptosis during Myocardial Ischemia/Reperfusion Injury. Cells. 2021;10(6):1446. Published 2021 Jun 9. doi:10.3390/cells10061446(IF:6.600)
[96] Wang B, Ke W, Wang K, et al. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. Oxid Med Cell Longev. 2021;2021:8884922. Published 2021 Feb 10. doi:10.1155/2021/8884922(IF:6.543)
[97] Jiang H, Gao X, Gong J, et al. Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress. Oxid Med Cell Longev. 2018;2018:1724648. Published 2018 Oct 10. doi:10.1155/2018/1724648(IF:6.543)
[98] Ma X, Li X, Di Q, et al. Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomed Pharmacother. 2021;138:111543. doi:10.1016/j.biopha.2021.111543(IF:6.530)
[99] Yao M, Han W, Feng L, et al. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem. 2022;233:114236. doi:10.1016/j.ejmech.2022.114236(IF:6.514)
[100] Wang XR, Wang S, Li WB, et al. Design, synthesis and biological evaluation of novel 2-(4-(1H-indazol-6-yl)-1H-pyrazol-1-yl)acetamide derivatives as potent VEGFR-2 inhibitors. Eur J Med Chem. 2021;213:113192. doi:10.1016/j.ejmech.2021.113192(IF:6.514)
[101] Zou Y, Mei D, Yuan J, et al. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine. 2021;16:1127-1141. Published 2021 Feb 12. doi:10.2147/IJN.S290466(IF:6.400)
[102] Liu H, Jiapaer Z, Meng F, et al. Construction Of High Loading Natural Active Substances Nanoplatform and Application in Synergistic Tumor Therapy. Int J Nanomedicine. 2022;17:2647-2659. Published 2022 Jun 15. doi:10.2147/IJN.S364108(IF:6.400)
[103] Yang X, Zhou Y, Li H, et al. Autophagic flux inhibition, apoptosis, and mitochondrial dysfunction in bile acids-induced impairment of human placental trophoblast. J Cell Physiol. 2022;237(7):3080-3094. doi:10.1002/jcp.30774(IF:6.384)
[104] Liu Y, Liu N, Xu D, et al. Hsa-miR-599 inhibits breast cancer progression via BRD4/Jagged1/Notch1 axis. J Cell Physiol. 2022;237(1):523-531. doi:10.1002/jcp.30548(IF:6.384)
[105] Wu J, Hu X, Liu R, Zhang J, Song A, Luan Y. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J Colloid Interface Sci. 2019;547:30-39. doi:10.1016/j.jcis.2019.03.087(IF:6.361)
[106] Cheng C, Chen X, Wang Y, et al. MSCs‑derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med. 2021;27(1):67. Published 2021 Jul 2. doi:10.1186/s10020-021-00324-0(IF:6.354)
[107] Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. Anal Chem. 2019;91(19):12581-12586. doi:10.1021/acs.analchem.9b03694(IF:6.350)
[108] Xia F, Hou W, Zhang C, et al. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater. 2018;68:308-319. doi:10.1016/j.actbio.2017.12.034(IF:6.319)
[109] Wang Y, Liu B, Wu P, et al. Dietary Selenium Alleviated Mouse Liver Oxidative Stress and NAFLD Induced by Obesity by Regulating the KEAP1/NRF2 Pathway. Antioxidants (Basel). 2022;11(2):349. Published 2022 Feb 10. doi:10.3390/antiox11020349(IF:6.313)
[110] Wang Y, Ding Y, Sun P, et al. Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants (Basel). 2022;11(5):799. Published 2022 Apr 19. doi:10.3390/antiox11050799(IF:6.313)
[111] Xu J, Wang J, Wang X, et al. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages. Cell Death Dis. 2020;11(10):934. Published 2020 Oct 30. doi:10.1038/s41419-020-03139-9(IF:6.304)
[112] Zhao Y, Fan K, Zhu Y, Zhao Y, Cai J, Jin L. Gestational exposure to BDE-209 induces placental injury via the endoplasmic reticulum stress-mediated PERK/ATF4/CHOP signaling pathway. Ecotoxicol Environ Saf. 2022;233:113307. doi:10.1016/j.ecoenv.2022.113307(IF:6.291)
[113] Peng Z, Yang X, Zhang H, Yin M, Luo Y, Xie C. MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum [published online ahead of print, 2021 Aug 20]. Ecotoxicol Environ Saf. 2021;224:112658. doi:10.1016/j.ecoenv.2021.112658(IF:6.291)
[114] Chen Y, Deng J, Liu F, et al. Energy-Free, Singlet Oxygen-Based Chemodynamic Therapy for Selective Tumor Treatment without Dark Toxicity. Adv Healthc Mater. 2019;8(18):e1900366. doi:10.1002/adhm.201900366(IF:6.270)
[115] Li T, Zhou J, Wang L, et al. Photo-Fenton-like Metal-Protein Self-Assemblies as Multifunctional Tumor Theranostic Agent. Adv Healthc Mater. 2019;8(15):e1900192. doi:10.1002/adhm.201900192(IF:6.270)
[116] Yi X, Dai J, Han Y, et al. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun Biol. 2018;1:202. Published 2018 Nov 21. doi:10.1038/s42003-018-0204-6(IF:6.268)
[117] Wu J, He X, Xiong Z, et al. Bruceine H Mediates EGFR-TKI Drug Persistence in NSCLC by Notch3-Dependent β-Catenin Activating FOXO3a Signaling. Front Oncol. 2022;12:855603. Published 2022 Apr 8. doi:10.3389/fonc.2022.855603(IF:6.244)
[118] Meng X, Deng Y, He S, Niu L, Zhu H. m6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesis by Regulating the miR-150-5p/E2F3 Axis. Front Oncol. 2021;11:629947. Published 2021 Feb 18. doi:10.3389/fonc.2021.629947(IF:6.244)
[119] Gao Y, Sun Z, Gu J, et al. Cancer-Associated Fibroblasts Promote the Upregulation of PD-L1 Expression Through Akt Phosphorylation in Colorectal Cancer. Front Oncol. 2021;11:748465. Published 2021 Nov 19. doi:10.3389/fonc.2021.748465(IF:6.244)
[120] Liu Y, Dong Y, He X, et al. piR-hsa-211106 Inhibits the Progression of Lung Adenocarcinoma Through Pyruvate Carboxylase and Enhances Chemotherapy Sensitivity. Front Oncol. 2021;11:651915. Published 2021 Jun 23. doi:10.3389/fonc.2021.651915(IF:6.244)
[121] Xu S, Song Y, Shao Y, Zhou H. Hsa_circ_0060927 Is a Novel Tumor Biomarker by Sponging miR-195-5p in the Malignant Transformation of OLK to OSCC. Front Oncol. 2022;11:747086. Published 2022 Jan 11. doi:10.3389/fonc.2021.747086(IF:6.244)
[122] Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p Promotes Non-Small Cell Lung Cancer Through SLC7A11-Mediated-Ferroptosis. Front Oncol. 2021;11:759346. Published 2021 Oct 13. doi:10.3389/fonc.2021.759346(IF:6.244)
[123] Dai P, Tang Z, Ruan P, Bajinka O, Liu D, Tan Y. Gimap5 Inhibits Lung Cancer Growth by Interacting With M6PR. Front Oncol. 2021;11:699847. Published 2021 Sep 15. doi:10.3389/fonc.2021.699847(IF:6.244)
[124] Zan X, Li S, Wei S, et al. COL8A1 Promotes NSCLC Progression Through IFIT1/IFIT3-Mediated EGFR Activation. Front Oncol. 2022;12:707525. Published 2022 Feb 24. doi:10.3389/fonc.2022.707525(IF:6.244)
[125] Xu D, Yang F, Fan Y, et al. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol. 2021;11:640276. Published 2021 May 25. doi:10.3389/fonc.2021.640276(IF:6.244)
[126] Hu L, Cai X, Dong S, et al. Synthesis and Anticancer Activity of Novel Actinonin Derivatives as HsPDF Inhibitors. J Med Chem. 2020;63(13):6959-6978. doi:10.1021/acs.jmedchem.0c00079(IF:6.205)
[127] Sun YF, Wang Y, Li XD, Wang H. SNHG15, a p53-regulated lncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 axis. Am J Cancer Res. 2022;12(2):816-828. Published 2022 Feb 15. (IF:6.166)
[128] Yu M, Hu X, Yan J, Wang Y, Lu F, Chang J. RIOK2 Inhibitor NSC139021 Exerts Anti-Tumor Effects on Glioblastoma via Inducing Skp2-Mediated Cell Cycle Arrest and Apoptosis. Biomedicines. 2021;9(9):1244. Published 2021 Sep 17. doi:10.3390/biomedicines9091244(IF:6.081)
[129] Liu ZQ, Liu K, Liu ZF, et al. Manganese-induced alpha-synuclein overexpression aggravates mitochondrial damage by repressing PINK1/Parkin-mediated mitophagy [published correction appears in Food Chem Toxicol. 2021 Dec;158:112660]. Food Chem Toxicol. 2021;152:112213. doi:10.1016/j.fct.2021.112213(IF:6.025)
[130] Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton's Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol. 2022;13:864194. Published 2022 Jun 3. doi:10.3389/fphar.2022.864194(IF:5.988)
[131] Zheng Z, Shang Y, Xu R, et al. Ubiquitin specific peptidase 38 promotes the progression of gastric cancer through upregulation of fatty acid synthase. Am J Cancer Res. 2022;12(6):2686-2696. Published 2022 Jun 15. (IF:5.942)
[132] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[133] Zhang Y, Wang X, Ma Z, et al. A potential strategy for in-stent restenosis: Inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion. Mater Sci Eng C Mater Biol Appl. 2020;115:111090. doi:10.1016/j.msec.2020.111090(IF:5.880)
[134] Cui T, Li S, Chen S, Liang Y, Sun H, Wang L. "Stealth" dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. Int J Pharm. 2021;600:120502. doi:10.1016/j.ijpharm.2021.120502(IF:5.875)
[135] Liang H, Chen M, Qi F, et al. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal Transduct Target Ther. 2019;4:23. Published 2019 Jul 19. doi:10.1038/s41392-019-0058-5(IF:5.873)
[136] Luan X, Sun M, Zhao X, Wang J, Han Y, Gao Y. Bisimidazolium Salt Glycosyltransferase Inhibitors Suppress Hepatocellular Carcinoma Progression In Vitro and In Vivo. Pharmaceuticals (Basel). 2022;15(6):716. Published 2022 Jun 5. doi:10.3390/ph15060716(IF:5.863)
[137] Tang Y, Shi C, Qin Y, et al. Network Pharmacology-Based Investigation and Experimental Exploration of the Antiapoptotic Mechanism of Colchicine on Myocardial Ischemia Reperfusion Injury. Front Pharmacol. 2021;12:804030. Published 2021 Dec 16. doi:10.3389/fphar.2021.804030(IF:5.811)
[138] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[139] Zhu L, Zhou H, Xu F, et al. Hepatic Ischemia-Reperfusion Impairs Blood-Brain Barrier Partly Due to Release of Arginase From Injured Liver. Front Pharmacol. 2021;12:724471. Published 2021 Oct 13. doi:10.3389/fphar.2021.724471(IF:5.811)
[140] Liu A, Wang H, Hou X, et al. Combinatory antitumor therapy by cascade targeting of a single drug. Acta Pharm Sin B. 2020;10(4):667-679. doi:10.1016/j.apsb.2019.08.011(IF:5.808)
[141] Peng RR, Wang LL, Gao WY, et al. The 5.8S pre-rRNA maturation factor, M-phase phosphoprotein 6, is a female fertility factor required for oocyte quality and meiosis. Cell Prolif. 2020;53(3):e12769. doi:10.1111/cpr.12769(IF:5.753)
[142] Niu X, Pu S, Ling C, et al. lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif. 2020;53(6):e12818. doi:10.1111/cpr.12818(IF:5.753)
[143] Wang N, Yu M, Fu Y, Ma Z. Blocking ATM Attenuates SKOV3 Cell Proliferation and Migration by Disturbing OGT/OGA Expression via hsa-miR-542-5p. Front Oncol. 2022;12:839508. Published 2022 Jun 20. doi:10.3389/fonc.2022.839508(IF:5.738)
[144] Hu Y, Wang B, Yi K, Lei Q, Wang G, Xu X. IFI35 is involved in the regulation of the radiosensitivity of colorectal cancer cells. Cancer Cell Int. 2021;21(1):290. Published 2021 Jun 3. doi:10.1186/s12935-021-01997-7(IF:5.722)
[145] Zou X, Liu Y, Di J, et al. ZMIZ2 promotes the development of triple-receptor negative breast cancer. Cancer Cell Int. 2022;22(1):52. Published 2022 Jan 31. doi:10.1186/s12935-021-02393-x(IF:5.722)
[146] Chen W, Chen H, Yang ZT, Mao EQ, Chen Y, Chen EZ. Free fatty acids-induced neutrophil extracellular traps lead to dendritic cells activation and T cell differentiation in acute lung injury. Aging (Albany NY). 2021;13(24):26148-26160. doi:10.18632/aging.203802(IF:5.682)
[147] Liu W, Long Q, Zhang W, et al. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 2021;13(15):19760-19775. doi:10.18632/aging.203388(IF:5.682)
[148] Chang L, Gao H, Wang L, et al. Exosomes derived from miR-1228 overexpressing bone marrow-mesenchymal stem cells promote growth of gastric cancer cells. Aging (Albany NY). 2021;13(8):11808-11821. doi:10.18632/aging.202878(IF:5.682)
[149] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[150] Zhu Y, Wang X, Zhou X, Ding L, Liu D, Xu H. DNMT1-mediated PPARα methylation aggravates damage of retinal tissues in diabetic retinopathy mice. Biol Res. 2021;54(1):25. Published 2021 Aug 6. doi:10.1186/s40659-021-00347-1(IF:5.612)
[151] Cui D, Zhang C, Liu B, et al. Regression of Gastric Cancer by Systemic Injection of RNA Nanoparticles Carrying both Ligand and siRNA. Sci Rep. 2015;5:10726. Published 2015 Jul 3. doi:10.1038/srep10726(IF:5.578)
[152] Xu X, Yuan X, Ni J, et al. MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J Cell Physiol. 2021;236(2):1116-1130. doi:10.1002/jcp.29922(IF:5.546)
[153] Lai SY, Guan HM, Liu J, et al. Long noncoding RNA SNHG12 modulated by human papillomavirus 16 E6/E7 promotes cervical cancer progression via ERK/Slug pathway. J Cell Physiol. 2020;235(11):7911-7922. doi:10.1002/jcp.29446(IF:5.546)
[154] Li YR, Peng RR, Gao WY, et al. The ubiquitin ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to ensure oocyte quality. Aging (Albany NY). 2019;11(4):1110-1128. doi:10.18632/aging.101802(IF:5.515)
[155] Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11(18):7830-7846. doi:10.18632/aging.102291(IF:5.515)
[156] Tang XD, Zhang DD, Jia L, Ji W, Zhao YS. lncRNA AFAP1-AS1 Promotes Migration and Invasion of Non-Small Cell Lung Cancer via Up-Regulating IRF7 and the RIG-I-Like Receptor Signaling Pathway. Cell Physiol Biochem. 2018;50(1):179-195. doi:10.1159/000493967(IF:5.500)
[157] Jiang Q, Chen Q, Li C, Gong Z, Li Z, Ding S. ox-LDL-Induced Endothelial Progenitor Cell Oxidative Stress via p38/Keap1/Nrf2 Pathway. Stem Cells Int. 2022;2022:5897194. Published 2022 Jan 31. doi:10.1155/2022/5897194(IF:5.443)
[158] Wu Z, Wu P, Zuo X, et al. LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation [published correction appears in Mol Neurobiol. 2017 Jan 4;:]. Mol Neurobiol. 2017;54(10):7670-7685. doi:10.1007/s12035-016-0246-z(IF:5.397)
[159] Halike X, Li J, Yuan P, et al. The petroleum ether extract of Brassica rapa L. induces apoptosis of lung adenocarcinoma cells via the mitochondria-dependent pathway. Food Funct. 2021;12(20):10023-10039. Published 2021 Oct 19. doi:10.1039/d1fo01547h(IF:5.396)
[160] Huo W, Li H, Zhang Y, Li H. Epigenetic silencing of microRNA-874-3p implicates in erectile dysfunction in diabetic rats by activating the Nupr1/Chop-mediated pathway. FASEB J. 2020;34(1):1695-1709. doi:10.1096/fj.201902086R(IF:5.391)
[161] Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B. 2020;8(36):8368-8382. doi:10.1039/d0tb01391a(IF:5.344)
[162] Zhang J, Yang S, Guan H, Zhou J, Gao Y. Xanthatin synergizes with cisplatin to suppress homologous recombination through JAK2/STAT4/BARD1 axis in human NSCLC cells. J Cell Mol Med. 2021;25(3):1688-1699. doi:10.1111/jcmm.16271(IF:5.310)
[163] Han J, Wang P, Xia X, et al. EGR1 promoted anticancer effects of Scutellarin via regulating LINC00857/miR-150-5p/c-Myc in osteosarcoma. J Cell Mol Med. 2021;25(17):8479-8489. doi:10.1111/jcmm.16809(IF:5.310)
[164] Hang C, Song Y, Li Y, et al. Knockout of MYOM1 in human cardiomyocytes leads to myocardial atrophy via impairing calcium homeostasis. J Cell Mol Med. 2021;25(3):1661-1676. doi:10.1111/jcmm.16268(IF:5.310)
[165] Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. CircPVT1 up-regulation attenuates steroid-induced osteonecrosis of the femoral head through regulating miR-21-5p-mediated Smad7/TGFβ signalling pathway. J Cell Mol Med. 2021;25(10):4608-4622. doi:10.1111/jcmm.16294(IF:5.310)
[166] Shen J, Dong J, Shao F, et al. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine (Lond). 2022;17(9):591-605. doi:10.2217/nnm-2022-0030(IF:5.307)
[167] Gu J, Lin Y, Wang Z, et al. Campylobacter jejuni Cytolethal Distending Toxin Induces GSDME-Dependent Pyroptosis in Colonic Epithelial Cells. Front Cell Infect Microbiol. 2022;12:853204. Published 2022 Apr 27. doi:10.3389/fcimb.2022.853204(IF:5.293)
[168] Wang Z, Liu M, Liu L, Li L, Tan L, Sun Y. The Synergistic Effect of Tacrolimus (FK506) or Everolimus and Azoles Against Scedosporium and Lomentospora Species In Vivo and In Vitro. Front Cell Infect Microbiol. 2022;12:864912. Published 2022 Apr 14. doi:10.3389/fcimb.2022.864912(IF:5.293)
[169] Xu C, Shao T, Shao S, Jin G. High activity, high selectivity and high biocompatibility BODIPY-pyrimidine derivatives for fluorescence target recognition and evaluation of inhibitory activity. Bioorg Chem. 2021;114:105121. doi:10.1016/j.bioorg.2021.105121(IF:5.275)
[170] Sun W, Sun F, Meng J, et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem. 2022;126:105906. doi:10.1016/j.bioorg.2022.105906(IF:5.275)
[171] Qiu CL, Ye ZN, Yan BC, et al. Structurally diverse diterpenoids from Isodon oresbius and their bioactivity. Bioorg Chem. 2022;124:105811. doi:10.1016/j.bioorg.2022.105811(IF:5.275)
[172] Ma Y, Yang X, Han H, et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem. 2021;111:104872. doi:10.1016/j.bioorg.2021.104872(IF:5.275)
[173] Ao M, Hu X, Qian Y, et al. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg Chem. 2021;113:104961. doi:10.1016/j.bioorg.2021.104961(IF:5.275)
[174] Zhao XJ, Zhu HY, Wang XL, et al. Oridonin Ameliorates Traumatic Brain Injury-Induced Neurological Damage by Improving Mitochondrial Function and Antioxidant Capacity and Suppressing Neuroinflammation through the Nrf2 Pathway. J Neurotrauma. 2022;39(7-8):530-543. doi:10.1089/neu.2021.0466(IF:5.269)
[175] Wang QY, Yali-Xiang, Hu QH, Huang SH, Lin J, Zhou QH. Surface charge switchable nano-micelle for pH/redox-triggered and endosomal escape mediated co-delivery of doxorubicin and paclitaxel in treatment of lung adenocarcinoma. Colloids Surf B Biointerfaces. 2022;216:112588. doi:10.1016/j.colsurfb.2022.112588(IF:5.268)
[176] Li W, Xie X, Wu T, et al. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces. 2019;181:305-314. doi:10.1016/j.colsurfb.2019.05.047(IF:5.268)
[177] Liu Y, Zhou Z, Liu Y, et al. H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy. Biomater Sci. 2019;7(12):5359-5368. doi:10.1039/c9bm01354g(IF:5.251)
[178] Hou J, Huang P, Lan C, et al. ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway. Cell Death Discov. 2022;8(1):32. Published 2022 Jan 21. doi:10.1038/s41420-022-00815-x(IF:5.241)
[179] Chen Y, Chen D, Qin Y, et al. TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov. 2022;8(1):35. Published 2022 Jan 24. doi:10.1038/s41420-022-00824-w(IF:5.241)
[180] Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry. 2021;27(53):13418-13425. doi:10.1002/chem.202102016(IF:5.236)
[181] Liu L, Sun X, Guo Y, Ge K. Evodiamine induces ROS-Dependent cytotoxicity in human gastric cancer cells via TRPV1/Ca2+ pathway. Chem Biol Interact. 2022;351:109756. doi:10.1016/j.cbi.2021.109756(IF:5.194)
[182] Zhang J, Yang F, Mei X, et al. Toosendanin and isotoosendanin suppress triple-negative breast cancer growth via inducing necrosis, apoptosis and autophagy. Chem Biol Interact. 2022;351:109739. doi:10.1016/j.cbi.2021.109739(IF:5.194)
[183] Du XF, Cui HT, Pan HH, et al. Role of the miR-133a-5p/FBXO6 axis in the regulation of intervertebral disc degeneration. J Orthop Translat. 2021;29:123-133. Published 2021 Jun 19. doi:10.1016/j.jot.2021.05.004(IF:5.191)
[184] Tan H, Hou N, Liu Y, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine. 2020;27:102192. doi:10.1016/j.nano.2020.102192(IF:5.182)
[185] Li WW, Wang HY, Nie X, Liu YB, Han M, Li BH. Human colorectal cancer cells induce vascular smooth muscle cell apoptosis in an exocrine manner. Oncotarget. 2017;8(37):62049-62056. Published 2017 Jun 27. doi:10.18632/oncotarget.18893(IF:5.168)
[186] Liu H, Lu Z, Shi X, et al. HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression. J Biol Chem. 2021;297(2):100996. doi:10.1016/j.jbc.2021.100996(IF:5.157)
[187] Zhang T, Feng S, Li J, et al. Farnesoid X receptor (FXR) agonists induce hepatocellular apoptosis and impair hepatic functions via FXR/SHP pathway. Arch Toxicol. 2022;96(6):1829-1843. doi:10.1007/s00204-022-03266-6(IF:5.153)
[188] Tian DH, Qin CH, Xu WY, et al. Phenotypic and functional comparison of rat enteric neural crest-derived cells during fetal and early-postnatal stages. Neural Regen Res. 2021;16(11):2310-2315. doi:10.4103/1673-5374.310701(IF:5.135)
[189] Kuang Z, Chen Z, Tu S, et al. Dopamine Suppresses Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells via AKT/GSK-3β/β-Catenin Signaling Pathway. Stem Cells Int. 2022;2022:4154440. Published 2022 Jun 29. doi:10.1155/2022/4154440(IF:5.131)
[190] Fan C, Feng J, Tang C, et al. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther. 2020;11(1):442. Published 2020 Oct 15. doi:10.1186/s13287-020-01948-5(IF:5.116)
[191] Zhou J, Hou J, Rao J, Zhou C, Liu Y, Gao W. Magnetically Directed Enzyme/Prodrug Prostate Cancer Therapy Based on β-Glucosidase/Amygdalin. Int J Nanomedicine. 2020;15:4639-4657. Published 2020 Jun 29. doi:10.2147/IJN.S242359(IF:5.115)
[192] Liu B, Chen D, Wang Y, et al. Adipose improves muscular atrophy caused by Sirtuin1 deficiency by promoting mitochondria synthesis. Int J Biochem Cell Biol. 2022;149:106246. doi:10.1016/j.biocel.2022.106246(IF:5.085)
[193] Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 Attenuated Sepsis-Induced Acute Kidney Injury by Promoting Alternative Macrophage Transition. Front Immunol. 2020;11:1415. Published 2020 Jul 7. doi:10.3389/fimmu.2020.01415(IF:5.085)
[194] Zhou GZ, Li J, Sun YH, Zhang Q, Zhang L, Pei C. Autophagy Delays Apoptotic Cell Death Induced by Siniperca chuatsi Rhabdovirus in Epithelioma Papulosum Cyprinid Cells. Viruses. 2021;13(8):1554. Published 2021 Aug 6. doi:10.3390/v13081554(IF:5.048)
[195] Liu H, Lu J, Hua Y, et al. Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death Dis. 2015;6(1):e1595. Published 2015 Jan 15. doi:10.1038/cddis.2014.555(IF:5.014)
[196] Li W, Xie X, Wu T, et al. Targeted delivery of Auristatin PE to Hep G2 cells using folate – conjugated boron nitride nanotubes. Mater Sci Eng C Mater Biol Appl. 2020;109:110509. doi:10.1016/j.msec.2019.110509(IF:4.959)
[197] Wu M, Deng X, Zhong Y, et al. MafF Is Regulated via the circ-ITCH/miR-224-5p Axis and Acts as a Tumor Suppressor in Hepatocellular Carcinoma. Oncol Res. 2020;28(3):299-309. doi:10.3727/096504020X15796890809840(IF:4.949)
[198] Qian C, Al-Hamyari B, Tang X, et al. Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Mol Pharm. 2021;18(12):4531-4542. doi:10.1021/acs.molpharmaceut.1c00735(IF:4.939)
[199] Wang J, Tan M, Ge J, et al. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif. 2018;51(4):e12452. doi:10.1111/cpr.12452(IF:4.936)
[200] Zhou W, Ji L, Liu X, et al. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury [published online ahead of print, 2021 Dec 1]. Biomed J. 2021;S2319-4170(21)00172-4. doi:10.1016/j.bj.2021.11.012(IF:4.910)
[201] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[202] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[203] Yan YL, Huang ZN, Zhu Z, et al. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol. 2020;10:667. Published 2020 May 21. doi:10.3389/fonc.2020.00667(IF:4.848)
[204] Yan W, Fu X, Gao Y, et al. Synthesis, antibacterial evaluation, and safety assessment of CuS NPs against Pectobacterium carotovorum subsp. carotovorum. Pest Manag Sci. 2022;78(2):733-742. doi:10.1002/ps.6686(IF:4.845)
[205] Deng Y, Zhu H, Xiao L, Liu C, Meng X. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (Albany NY). 2020;13(2):2198-2211. doi:10.18632/aging.202234(IF:4.831)
[206] Li B, Zhu F, He F, et al. Synthesis and biological evaluations of N'-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg Chem. 2020;96:103592. doi:10.1016/j.bioorg.2020.103592(IF:4.831)
[207] Yin H, Wang H, Wang M, et al. CircTCF25 serves as a sponge for miR-206 to support proliferation, migration, and invasion of glioma via the Jak2/p-Stat3/CypB axis. Mol Carcinog. 2022;61(6):558-571. doi:10.1002/mc.23402(IF:4.784)
[208] Wang J , Fang T , Li M , et al. Intracellular delivery of peptide drugs using viral nanoparticles of bacteriophage P22: covalent loading and cleavable release. J Mater Chem B. 2018;6(22):3716-3726. doi:10.1039/c8tb00186c(IF:4.776)
[209] Yang L, Tang J, Yin H, et al. Self-Assembled Nanoparticles for Tumor-Triggered Targeting Dual-Mode NIRF/MR Imaging and Photodynamic Therapy Applications. ACS Biomater Sci Eng. 2022;8(2):880-892. doi:10.1021/acsbiomaterials.1c01418(IF:4.749)
[210] Zhang C, Deng K, Xu D, et al. Fe-Based Theranostic Agents Respond to the Tumor Microenvironment for MRI-Guided Ferroptosis-/Apoptosis-Inducing Anticancer Therapy. ACS Biomater Sci Eng. 2022;8(6):2610-2623. doi:10.1021/acsbiomaterials.1c01626(IF:4.749)
[211] Gu C, Du W, Chai M, et al. Human umbilical cord-derived mesenchymal stem cells affect urea synthesis and the cell apoptosis of human induced hepatocytes by secreting IL-6 in a serum-free co-culture system. Biotechnol J. 2022;17(1):e2100096. doi:10.1002/biot.202100096(IF:4.677)
[212] Xi Z, Qiao Y, Wang J, et al. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103 [retracted in:  J Cell Mol Med. 2021 Feb;25(4):2286]. J Cell Mol Med. 2020;24(2):1451-1459. doi:10.1111/jcmm.14826(IF:4.658)
[213] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[214] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[215] Wang H, Tian Q, Xu J, Xu W, Yao K, Chen X. Cataract-causing G91del mutant destabilised βA3 heteromers formation linking with structural stability and cellular viability [published online ahead of print, 2021 Sep 6]. Br J Ophthalmol. 2021;bjophthalmol-2021-320033. doi:10.1136/bjophthalmol-2021-320033(IF:4.638)
[216] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[217] Asila A, Yang X, Kaisaer Y, Ma L. SNHG16/miR-485-5p/BMP7 axis modulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Gene Med. 2021;23(3):e3296. doi:10.1002/jgm.3296(IF:4.565)
[218] Chen X, Tang Y, Yan J, Li L, Jiang L, Chen Y. Circ_0062270 upregulates EPHA2 to facilitate melanoma progression via sponging miR-331-3p. J Dermatol Sci. 2021;103(3):176-182. doi:10.1016/j.jdermsci.2021.08.005(IF:4.563)
[219] Guo N, Gao C, Liu J, et al. Reversal of Ovarian Cancer Multidrug Resistance by a Combination of LAH4-L1-siMDR1 Nanocomplexes with Chemotherapeutics. Mol Pharm. 2018;15(5):1853-1861. doi:10.1021/acs.molpharmaceut.8b00031(IF:4.556)
[220] Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother. 2020;129:110371. doi:10.1016/j.biopha.2020.110371(IF:4.545)
[221] Liu X , Liu B , Gao S , et al. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J Mater Chem B. 2017;5(11):2078-2085. doi:10.1039/c7tb00100b(IF:4.543)
[222] Wen C, Lin L, Zou R, Lin F, Liu Y. Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle. 2022;21(3):289-303. doi:10.1080/15384101.2021.2019411(IF:4.534)
[223] Zhang H, Luo Z, Tang J, et al. Transcription factor NFIC functions as a tumor suppressor in lung squamous cell carcinoma progression by modulating lncRNA CASC2. Cell Cycle. 2022;21(1):63-73. doi:10.1080/15384101.2021.1995130(IF:4.534)
[224] Xie LB, Chen B, Liao X, et al. LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway. J Cell Mol Med. 2020;24(10):5555-5564. doi:10.1111/jcmm.15211(IF:4.486)
[225] Xue Y, Dongmei Li, Yige Zhang, Hang Gao, Li H. Angelica polysaccharide moderates hypoxia-evoked apoptosis and autophagy in rat neural stem cells by downregulation of BNIP3. Artif Cells Nanomed Biotechnol. 2019;47(1):2492-2499. doi:10.1080/21691401.2019.1623228(IF:4.462)
[226] Chen Y, Qin Y, Dai M, et al. IBSP, a potential recurrence biomarker, promotes the progression of colorectal cancer via Fyn/β-catenin signaling pathway. Cancer Med. 2021;10(12):4030-4045. doi:10.1002/cam4.3959(IF:4.452)
[227] Meng H, Shen M, Li J, et al. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol. 2021;906:174280. doi:10.1016/j.ejphar.2021.174280(IF:4.432)
[228] Peng Z, Wangmu T, Li L, Han G, Huang D, Yi P. Combination of berberine and low glucose inhibits gastric cancer through the PP2A/GSK3β/MCL-1 signaling pathway. Eur J Pharmacol. 2022;922:174918. doi:10.1016/j.ejphar.2022.174918(IF:4.432)
[229] Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer. 2021;21(1):456. Published 2021 Apr 23. doi:10.1186/s12885-021-08202-y(IF:4.430)
[230] Yang Y, Wang D, Li Q, et al. Immune-Enhancing Activity of Aqueous Extracts from Artemisia rupestris L. via MAPK and NF-kB Pathways of TLR4/TLR2 Downstream in Dendritic Cells. Vaccines (Basel). 2020;8(3):525. Published 2020 Sep 13. doi:10.3390/vaccines8030525(IF:4.422)
[231] Xia WP, Chen X, Ru F, et al. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6. Mol Immunol. 2021;139:87-96. doi:10.1016/j.molimm.2021.07.012(IF:4.407)
[232] Wang N, Guo Y, Song L, Tong T, Fan X. Circular RNA intraflagellar transport 80 facilitates endometrial cancer progression through modulating miR-545-3p/FAM98A signaling. J Gynecol Oncol. 2022;33(1):e2. doi:10.3802/jgo.2022.33.e2(IF:4.401)
[233] Yuan S, Xu Y, Yi T, Wang H. The anti-tumor effect of OP-B on ovarian cancer in vitro and in vivo, and its mechanism: An investigation using network pharmacology-based analysis. J Ethnopharmacol. 2022;283:114706. doi:10.1016/j.jep.2021.114706(IF:4.360)
[234] Tian Y, Qi Y, Cai H, Xu M, Zhang Y. Senegenin alleviates Aβ1-42 induced cell damage through triggering mitophagy. J Ethnopharmacol. 2022;295:115409. doi:10.1016/j.jep.2022.115409(IF:4.360)
[235] Wu M, Huang J, Shi J, Shi L, Zeng Q, Wang H. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts In Vivo and In Vitro. J Ethnopharmacol. 2022;293:115321. doi:10.1016/j.jep.2022.115321(IF:4.360)
[236] Li Y, Chen J, Song S. Circ-OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR-558/THBS2 axis. Drug Dev Res. 2022;83(4):1034-1046. doi:10.1002/ddr.21931(IF:4.360)
[237] Yuan FY, Xu F, Fan RZ, et al. Structural Elucidation of Three 9,11-Seco Tetracyclic Triterpenoids Enables the Structural Revision of Euphorol J. J Org Chem. 2021;86(11):7588-7593. doi:10.1021/acs.joc.1c00631(IF:4.354)
[238] Li W, Xu J, Cheng L, et al. RelB promotes the migration and invasion of prostate cancer DU145 cells via exosomal ICAM1 in vitro. Cell Signal. 2022;91:110221. doi:10.1016/j.cellsig.2021.110221(IF:4.315)
[239] Shi L, Zhang Y, Xia Y, Li C, Song Z, Zhu J. MiR-150-5p protects against septic acute kidney injury via repressing the MEKK3/JNK pathway. Cell Signal. 2021;86:110101. doi:10.1016/j.cellsig.2021.110101(IF:4.315)
[240] Wang Q, Liang D, Shen P, Yu Y, Yan Y, You W. Hsa_circ_0092276 promotes doxorubicin resistance in breast cancer cells by regulating autophagy via miR-348/ATG7 axis. Transl Oncol. 2021;14(8):101045. doi:10.1016/j.tranon.2021.101045(IF:4.243)
[241] Zhu J, Luo JE, Chen Y, Wu Q. Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/CBX2 axis in ovarian cancer. J Ovarian Res. 2021;14(1):136. Published 2021 Oct 14. doi:10.1186/s13048-021-00888-9(IF:4.234)
[242] Chen R, Liang F, Yan J, Wang Y. CircCDK17 knockdown inhibits tumor progression and cell glycolysis by downregulaing YWHAZ expression through sponging miR-1294 in cervical cancer. J Ovarian Res. 2022;15(1):24. Published 2022 Feb 15. doi:10.1186/s13048-022-00952-y(IF:4.234)
[243] Liu G, Xu X, Jiang L, et al. Targeted Antitumor Mechanism of C-PC/CMC-CD55sp Nanospheres in HeLa Cervical Cancer Cells. Front Pharmacol. 2020;11:906. Published 2020 Jun 18. doi:10.3389/fphar.2020.00906(IF:4.225)
[244] Liu Z, Zhu Q, Song E, Song Y. Polybrominated diphenyl ethers quinone exhibits neurotoxicity by inducing DNA damage, cell cycle arrest, apoptosis and p53-driven adaptive response in microglia BV2 cells. Toxicology. 2021;457:152807. doi:10.1016/j.tox.2021.152807(IF:4.221)
[245] Xiao L, Yuan W, Huang C, Luo Q, Xiao R, Chen ZH. LncRNA PCAT19 induced by SP1 and acted as oncogene in gastric cancer competitively binding to miR429 and upregulating DHX9. J Cancer. 2022;13(1):102-111. Published 2022 Jan 1. doi:10.7150/jca.61961(IF:4.207)
[246] Xu H, Ma Z, Mo X, et al. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer. 2022;13(7):2226-2237. Published 2022 Apr 11. doi:10.7150/jca.66020(IF:4.207)
[247] Zhu L, Zhou D, Guo T, et al. LncRNA GAS5 inhibits Invasion and Migration of Lung Cancer through influencing EMT process. J Cancer. 2021;12(11):3291-3298. Published 2021 Apr 2. doi:10.7150/jca.56218(IF:4.207)
[248] Hu H, Yin S, Ma R, et al. CREBBP knockdown suppressed proliferation and promoted chemo-sensitivity via PERK-mediated unfolded protein response in ovarian cancer. J Cancer. 2021;12(15):4595-4603. Published 2021 Jun 1. doi:10.7150/jca.56135(IF:4.207)
[249] Li K, Li R, Ni Y, et al. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med. 2018;16(1):203. Published 2018 Jul 20. doi:10.1186/s12967-018-1575-7(IF:4.197)
[250] Zhang K, Zhou H, Yan B, Cao X. TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma. Cancer Cell Int. 2020;20:148. Published 2020 May 6. doi:10.1186/s12935-020-01224-9(IF:4.175)
[251] Chen Z, Chen C, Zhou T, et al. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int. 2020;20:337. Published 2020 Jul 23. doi:10.1186/s12935-020-01427-0(IF:4.175)
[252] Deng Q, Wu M, Deng J. USP36 promotes tumor growth of non-small cell lung cancer via increasing KHK-A expression by regulating c-MYC-hnRNPH1/H2 axis. Hum Cell. 2022;35(2):694-704. doi:10.1007/s13577-022-00677-6(IF:4.174)
[253] Guo T, Yuan D, Zhang W, et al. Upregulation of long noncoding RNA XIST has anticancer effects on ovarian cancer through sponging miR-106a. Hum Cell. 2021;34(2):579-587. doi:10.1007/s13577-020-00469-w(IF:4.174)
[254] Cheng L, Yu P, Li F, et al. Human umbilical cord-derived mesenchymal stem cell-exosomal miR-627-5p ameliorates non-alcoholic fatty liver disease by repressing FTO expression. Hum Cell. 2021;34(6):1697-1708. doi:10.1007/s13577-021-00593-1(IF:4.174)
[255] Zhang H, Pan Z, Ju J, et al. DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J Anim Sci Biotechnol. 2020;11:77. Published 2020 Aug 5. doi:10.1186/s40104-020-00489-4(IF:4.167)
[256] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[257] Hong Y, Liu N, Zhou R, et al. Combination Therapy Using Kartogenin-Based Chondrogenesis and Complex Polymer Scaffold for Cartilage Defect Regeneration. ACS Biomater Sci Eng. 2020;6(11):6276-6284. doi:10.1021/acsbiomaterials.0c00724(IF:4.152)
[258] Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther. 2021;14:3151-3165. Published 2021 May 13. doi:10.2147/OTT.S291823(IF:4.147)
[259] Sun S, Wang P, Ren L, Wang H, Zhan Y, Shan S. Sevoflurane Suppresses Colon Cancer Cell Malignancy by Regulating circ-PI4KA. Onco Targets Ther. 2021;14:3319-3333. Published 2021 May 20. doi:10.2147/OTT.S295552(IF:4.147)
[260] Zhang Q, Xu L, Wang J, et al. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther. 2021;14:1187-1204. Published 2021 Feb 22. doi:10.2147/OTT.S288799(IF:4.147)
[261] Yue Q, Xu Y, Deng X, et al. Circ-PITX1 Promotes the Progression of Non-Small Cell Lung Cancer Through Regulating the miR-1248/CCND2 Axis. Onco Targets Th

产品描述

Annexin V-FITC/PI细胞凋亡检测试剂盒是用FITC标记的Annexin V作为探针,来检测细胞早期凋亡的发生。

其检测原理为:在正常的活细胞中,磷脂酰丝氨酸(phosphotidylserine,PS)位于细胞膜的内侧,但在早期凋亡的细胞中,PS 从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-Ⅴ(膜联蛋白-V)是一种分子量为35-36 kDaCa2+ 依赖性磷脂结合蛋白,能与PS高亲和力结合可通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。

另外,本试剂盒中还提供了碘化丙啶(Propidium Iodide,PI)用来区分存活的早期细胞和坏死或晚期凋亡细胞。PI是一种核酸染料,它不能透过正常细胞或早期凋亡细胞的完整的细胞膜,但可以透过凋亡晚期和坏死细胞的细胞膜而使细胞核染红。因此,将Annexin V与PI联合使用时,PI 则被排除在活细胞(Annexin V-/PI-)和早期凋亡细胞(Annexin V+/PI-)之外,而晚期凋亡细胞和坏死细胞同时被FITC 和PI 结合染色呈现双阳性(Annexin V+/PI+)。

本试剂盒可用于流式细胞仪、荧光显微镜进行检测。

 

产品组分

编号

组分

产品编号/规格

40302ES20(20T)

40302ES50(50T)

40302ES60(100T)

40302-A

Annexin V-FITC

100 μL

250 μL

500 μL

40302-B

PI Staining Solution

200 μL

500 μL

1.0 mL

40302-C

1×Binding Buffer

10 mL

25 mL

50 mL

 

运输与保存方法

冰袋(wet ice)运输。-20℃避光保存,避免反复冻融,一年有效。

【注】:如果需要在短时间内多次重复使用,可以在4℃避光保存,半年有效。

 

注意事项

1)由于细胞凋亡是一个快速的过程,建议样品在染色后1小时之内进行分析。

2) 对于贴壁细胞,消化是一个关键步骤。贴壁细胞诱导细胞凋亡时如有漂浮细胞,需收集漂浮细胞和贴壁细胞后合并染色。处理贴壁细胞时要小心操作,尽量避免人为的损伤。胰酶消化时间过短,细胞需要用力吹打才能脱落,容易造成细胞膜的损伤;PI摄入过多,消化时间过长,细胞膜同样易造成损伤,甚至会影响细胞膜上磷脂酰丝氨酸与Annexin V-FITC的结合。消化时将胰酶铺满孔板底后,轻摇使胰酶与细胞充分接触,然后倒掉大部分胰酶,利用剩余少量胰酶再消化一段时间,待细胞间空隙增大,瓶底呈花斑状即可终止。在消化液中尽量不用EDTA,EDTA会影响Annexin V与PS的结合。

3)如果样品来源于血液,请务必除去血液中的血小板。因为血小板含有PS,能与Annexin V结合,从而干扰实验结果。可以使用含有EDTA的缓冲剂并在200 g离心洗去血小板。

4)试剂在开盖前请短暂离心,将盖内壁上的液体甩至管底,避免开盖时液体洒落。

5Annexin V-FITC和PI是光敏物质,在操作时请注意避光。

6)本产品仅作科研用途!

 

操作方法

1.1 样品染色

1)悬浮细胞300 g,4℃离心5 min收集细胞。

贴壁细胞:用不含EDTA的胰酶消化后,300 g,4℃离心5 min收集细胞。胰酶消化时间不宜过长,以防引起假阳性。

2)用预冷的PBS洗涤细胞2次,每次均需300 g,4℃离心5 min。收集1~5×105细胞。

3)吸弃PBS,加入100 μL 1×Binding Buffer重悬细胞。

4)加入5 μL Annexin V-FITC和10 μLPI Staining Solution,轻轻混匀。

5)避光、室温反应10-15 min。

6)加入400 μL 1×Binding Buffer,混匀后放置于冰上,样品在1小时内用流式细胞仪或荧光显微镜检测。

【注】:为了避免洗涤细胞时损失细胞,在吸液时可以用大的Tip头套上小的Tip头吸液。

1.2 样品分析

A.流式细胞仪分析:

FITC最大激发波长为488 nm,最大发射波长525 nm,FITC的绿色荧光在FL1通道检测;PI-DNA复合物的最大激发波长为535 nm,最大发射波长为615 nm,PI的红色荧光在FL2或FL3通道检测。用CellQuest等软件进行分析,绘制双色散点图(two-color dot plot),FITC为横坐标,PI为纵坐标。典型的实验中,细胞可以分成三个亚群,活细胞仅有很低强度的背景荧光,早期凋亡细胞仅有较强的绿色荧光,晚期凋亡细胞有绿色和红色荧光双重染色。

B.荧光显微镜分析:

1)滴一滴用Annexin V-FITC/PI双染的细胞悬液于载玻片上,并用盖玻片盖上细胞。

【注】:对于贴壁细胞,可直接用盖玻片培养细胞并诱导细胞凋亡。

2)在荧光显微镜下用双色滤光片观察。Annexin V-FITC荧光信号呈绿色,PI荧光信号呈红色。

 

相关产品

产品名称

货号

规格

Cell Cycle and Apoptosis Analysis Kit

细胞周期与细胞凋亡检测试剂盒

40301ES50

50 T

40301ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

Annexin V-EGFP/PI Apoptosis Detection Kit

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 647/PI Apoptosis Detection Kit

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 488/PI Apoptosis Detection Kit

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

Annexin V-PE/7-AAD细胞凋亡检测试剂盒

Annexin V-PE/7-AAD Apoptosis Detection Kit

40310ES20

20 T

40310ES50

50 T

40310ES60

100 T

 

 

HB220609

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A: Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物)含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

Q:40302ES Annexin V-FITC/PI 细胞凋亡检测试剂盒里的PI的浓度是多少呢?

A:20ug/ml。

Q:实验结果如何判断?

A:活细胞(Annexin V-/PI-)

  早期凋亡细胞(Annexin V+/PI-)

  晚期凋亡细胞和坏死细胞呈现双阳性(Annexin V+/PI+)

  裸核(Annexin V-/PI+)

Q: Annexin VTUNEL有什么区别?

A:末端脱氧核苷酸转移酶 dUTP 缺口末端标记 (TUNEL) 是一种染色方法,用于识别细胞内 DNA 片段化位点——晚期细胞凋亡的标志性特征。 它使用酶末端脱氧核苷酸转移酶 (TdT) 将修饰的 dNTP(例如 dUTP)连接到片段化 DNA 链的 3'-羟基末端。 dNTPs 通常用荧光团修饰以促进量化和/或可视化。

Annexin V 染色通过结合由于细胞膜不对称性丧失而暴露在细胞外的 PS 残基来识别细胞凋亡的早期阶段。 Annexin V 通常用 FITC 等荧光团标记,以促进凋亡细胞的检测。

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

 

 

[1] Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med. 2022;28(2):272-282. doi:10.1038/s41591-021-01645-7(IF:53.440)
[2] Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247-258. doi:10.1038/s41422-020-0389-3(IF:25.617)
[3] Wang Z, Yu L, Wang Y, et al. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. Adv Sci (Weinh). 2022;9(8):e2104793. doi:10.1002/advs.202104793(IF:16.806)
[4] Zhang M, Shao W, Yang T, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication [published online ahead of print, 2022 Jun 4]. Adv Sci (Weinh). 2022;e2201135. doi:10.1002/advs.202201135(IF:16.806)
[5] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[6] Li Y, Cui K, Zhang Q, et al. FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death Differ. 2021;28(7):2112-2125. doi:10.1038/s41418-021-00739-6(IF:15.828)
[7] Li X, Yong T, Wei Z, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat Commun. 2022;13(1):2794. Published 2022 May 19. doi:10.1038/s41467-022-30306-7(IF:14.919)
[8] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[9] Wang XS, Zeng JY, Li MJ, Li QR, Gao F, Zhang XZ. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano. 2020;14(8):9848-9860. doi:10.1021/acsnano.0c02516(IF:14.588)
[10] Wang M, Zhang L, Cai Y, et al. Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy [published online ahead of print, 2020 Nov 17]. ACS Nano. 2020;10.1021/acsnano.0c07610. doi:10.1021/acsnano.0c07610(IF:14.588)
[11] Deng RH, Zou MZ, Zheng D, et al. Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy. ACS Nano. 2019;13(8):8618-8629. doi:10.1021/acsnano.9b02993(IF:13.903)
[12] Zhao H, Xu J, Huang W, et al. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano. 2019;13(6):6647-6661. doi:10.1021/acsnano.9b00972(IF:13.903)
[13] Zhang C, Gao F, Wu W, et al. Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS Nano. 2019;13(10):11249-11262. doi:10.1021/acsnano.9b04315(IF:13.903)
[14] Wan SS, Cheng Q, Zeng X, Zhang XZ. A Mn(III)-Sealed Metal-Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics. ACS Nano. 2019;13(6):6561-6571. doi:10.1021/acsnano.9b00300(IF:13.903)
[15] Wei JL, Wu SY, Yang YS, et al. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002383. doi:10.1136/jitc-2021-002383(IF:13.751)
[16] Wang L, Qin W, Xu W, et al. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin A Expression. Small. 2021;17(40):e2102932. doi:10.1002/smll.202102932(IF:13.281)
[17] Wan SS, Zhang L, Zhang XZ. An ATP-Regulated Ion Transport Nanosystem for Homeostatic Perturbation Therapy and Sensitizing Photodynamic Therapy by Autophagy Inhibition of Tumors. ACS Cent Sci. 2019;5(2):327-340. doi:10.1021/acscentsci.8b00822(IF:12.837)
[18] Sun D, Zou Y, Song L, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 2022;12(1):378-393. doi:10.1016/j.apsb.2021.06.005(IF:11.614)
[19] Yang Y, Hu D, Lu Y, et al. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B. 2022;12(6):2710-2730. doi:10.1016/j.apsb.2021.08.021(IF:11.614)
[20] Hu Q, Jia L, Zhang X, Zhu A, Wang S, Xie X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm Sin B. 2022;12(1):394-405. doi:10.1016/j.apsb.2021.05.021(IF:11.614)
[21] Wang M, Xu Y, Zhang Y, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics. 2021;11(10):5010-5027. Published 2021 Mar 5. doi:10.7150/thno.55645(IF:11.556)
[22] Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics. 2021;11(13):6477-6490. Published 2021 Apr 19. doi:10.7150/thno.55708(IF:11.556)
[23] Fan Q, Zuo J, Tian H, et al. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J Exp Clin Cancer Res. 2022;41(1):162. Published 2022 May 3. doi:10.1186/s13046-022-02372-8(IF:11.161)
[24] Lei X, Cao K, Chen Y, et al. Nuclear Transglutaminase 2 interacts with topoisomerase II⍺ to promote DNA damage repair in lung cancer cells. J Exp Clin Cancer Res. 2021;40(1):224. Published 2021 Jul 5. doi:10.1186/s13046-021-02009-2(IF:11.161)
[25] Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. J Hazard Mater. 2021;420:126697. doi:10.1016/j.jhazmat.2021.126697(IF:10.588)
[26] Zhang C, Peng SY, Hong S, et al. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials. 2020;245:119986. doi:10.1016/j.biomaterials.2020.119986(IF:10.317)
[27] Zhang L, Cheng Q, Li C, Zeng X, Zhang XZ. Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials. 2020;248:120029. doi:10.1016/j.biomaterials.2020.120029(IF:10.317)
[28] Zhang C, Zheng DW, Li CX, et al. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials. 2019;223:119472. doi:10.1016/j.biomaterials.2019.119472(IF:10.273)
[29] Cheng Q, Yu W, Ye J, et al. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials. 2019;224:119500. doi:10.1016/j.biomaterials.2019.119500(IF:10.273)
[30] Zhong H, Huang PY, Yan P, et al. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater. 2021;10(19):e2100770. doi:10.1002/adhm.202100770(IF:9.933)
[31] Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release. 2022;341:892-903. doi:10.1016/j.jconrel.2021.12.026(IF:9.776)
[32] Hu X, Tian H, Jiang W, Song A, Li Z, Luan Y. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. Small. 2018;14(52):e1802994. doi:10.1002/smll.201802994(IF:9.598)
[33] Yao Y, Li P, He J, Wang D, Hu J, Yang X. Albumin-Templated Bi2Se3-MnO2 Nanocomposites with Promoted Catalase-Like Activity for Enhanced Radiotherapy of Cancer. ACS Appl Mater Interfaces. 2021;13(24):28650-28661. doi:10.1021/acsami.1c05669(IF:9.229)
[34] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[35] Liu J, Zhou B, Guo Y, et al. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis [published online ahead of print, 2021 Jun 16]. ACS Appl Mater Interfaces. 2021;10.1021/acsami.1c06380. doi:10.1021/acsami.1c06380(IF:9.229)
[36] Ye R, Zheng Y, Chen Y, et al. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS Appl Mater Interfaces. 2021;13(47):55902-55912. doi:10.1021/acsami.1c17618(IF:9.229)
[37] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[38] Sun J, Liu J, Gao C, et al. Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater. 2022;140:573-585. doi:10.1016/j.actbio.2021.12.023(IF:8.947)
[39] Gao J, Liu J, Meng Z, et al. Ultrasound-assisted C3F8-filled PLGA nanobubbles for enhanced FGF21 delivery and improved prophylactic treatment of diabetic cardiomyopathy. Acta Biomater. 2021;130:395-408. doi:10.1016/j.actbio.2021.06.015(IF:8.947)
[40] Xia F, Hou W, Liu Y, et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials. 2018;170:1-11. doi:10.1016/j.biomaterials.2018.03.048(IF:8.806)
[41] Xu M, Zhao X, Zhao S, et al. Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett. 2021;520:282-294. doi:10.1016/j.canlet.2021.08.001(IF:8.679)
[42] Hu XK, Rao SS, Tan YJ, et al. Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Theranostics. 2020;10(17):7710-7729. Published 2020 Jun 19. doi:10.7150/thno.45858(IF:8.579)
[43] Wu D, Zhu ZQ, Tang HX, et al. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Theranostics. 2020;10(21):9808-9829. Published 2020 Aug 2. doi:10.7150/thno.43631(IF:8.579)
[44] Hong Y, Han Y, Wu J, et al. Chitosan modified Fe3O4/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics. 2020;10(12):5565-5577. Published 2020 Apr 15. doi:10.7150/thno.43569(IF:8.579)
[45] Ding MH, Wang Z, Jiang L, et al. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials. 2015;56:165-178. doi:10.1016/j.biomaterials.2015.03.058(IF:8.557)
[46] Liang H, Zhou Z, Luo R, et al. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8(18):5059-5071. Published 2018 Oct 5. doi:10.7150/thno.28344(IF:8.537)
[47] Zhou Z, Zhang Q, Zhang M, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics. 2018;8(17):4604-4619. Published 2018 Sep 9. doi:10.7150/thno.26889(IF:8.537)
[48] Qi HZ, Ye YL, Suo Y, et al. Wnt/β-catenin signaling mediates the abnormal osteogenic and adipogenic capabilities of bone marrow mesenchymal stem cells from chronic graft-versus-host disease patients. Cell Death Dis. 2021;12(4):308. Published 2021 Mar 23. doi:10.1038/s41419-021-03570-6(IF:8.469)
[49] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[50] Xia J, Zhang J, Wang L, et al. Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis. 2021;12(9):833. Published 2021 Sep 4. doi:10.1038/s41419-021-04126-4(IF:8.469)
[51] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[52] Zhang D, Zhang J, Li Q, Song A, Li Z, Luan Y. Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability. ACS Appl Mater Interfaces. 2019;11(36):32633-32646. doi:10.1021/acsami.9b09568(IF:8.456)
[53] Zhang J, Zhang D, Li Q, et al. Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS Appl Mater Interfaces. 2019;11(46):42904-42916. doi:10.1021/acsami.9b13556(IF:8.456)
[54] Ke R, Zhen X, Wang HS, et al. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307-319. doi:10.1016/j.jcis.2021.12.009(IF:8.128)
[55] Jiang W, Zhang H, Wu J, et al. CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo-Photothermal Therapy. ACS Appl Mater Interfaces. 2018;10(40):34513-34523. doi:10.1021/acsami.8b13487(IF:8.097)
[56] Zhang A, Pan S, Zhang Y, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9(12):3443-3458. Published 2019 May 24. doi:10.7150/thno.33266(IF:8.063)
[57] Liu Y, Pan Y, Cao W, et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2– based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 2019;9(23):6867-6884. Published 2019 Sep 21. doi:10.7150/thno.37586(IF:8.063)
[58] Zhang C, Zhou Z, Zhi X, et al. Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTP1. Theranostics. 2015;5(2):134-149. Published 2015 Jan 1. doi:10.7150/thno.10363(IF:8.022)
[59] Jiang K, Zhao D, Ye R, et al. Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy. Nanoscale. 2022;14(5):1834-1846. Published 2022 Feb 3. doi:10.1039/d1nr06353g(IF:7.790)
[60] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[61] Chen J , Li S , Liu X , et al. Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. Nanoscale. 2021;13(22):9989-10001. doi:10.1039/d1nr01552d(IF:7.790)
[62] Gao R, Liu D, Guo W, et al. Meprin-α (Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol. 2020;177(12):2872-2885. doi:10.1111/bph.15019(IF:7.730)
[63] Yang X, Gao F, Zhang W, et al. "Star" miR-34a and CXCR4 antagonist based nanoplex for binary cooperative migration treatment against metastatic breast cancer. J Control Release. 2020;326:615-627. doi:10.1016/j.jconrel.2020.07.029(IF:7.727)
[64] Wu T, Liang X, Liu X, et al. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 2020;17(1):30. Published 2020 Jul 11. doi:10.1186/s12989-020-00363-1(IF:7.546)
[65] Yan Y, Zhao W, Liu W, et al. CCL19 enhances CD8+ T-cell responses and accelerates HBV clearance. J Gastroenterol. 2021;56(8):769-785. doi:10.1007/s00535-021-01799-8(IF:7.527)
[66] Fan RZ, Chen L, Su T, et al. Discovery of 8,9-seco-ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J Med Chem. 2021;64(14):9926-9942. doi:10.1021/acs.jmedchem.1c00166(IF:7.446)
[67] Xu M, Zhao C, Zhu B, et al. Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment Assembling Approach. J Med Chem. 2021;64(4):2010-2023. doi:10.1021/acs.jmedchem.0c01521(IF:7.446)
[68] Hou W, Zhao X, Qian X, et al. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale. 2016;8(1):104-116. doi:10.1039/c5nr06842h(IF:7.394)
[69] Gao W, Liu Y, Zhang H, Wang Z. Electrochemiluminescence Biosensor for Nucleolin Imaging in a Single Tumor Cell Combined with Synergetic Therapy of Tumor. ACS Sens. 2020;5(4):1216-1222. doi:10.1021/acssensors.0c00292(IF:7.333)
[70] Yin M, Zhang J, Zeng X, Zhang H, Gao Y. Target identification and drug discovery by data-driven hypothesis and experimental validation in ovarian endometriosis. Fertil Steril. 2021;116(2):478-492. doi:10.1016/j.fertnstert.2021.01.027(IF:7.329)
[71] Chen CY, Du W, Rao SS, et al. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater. 2020;111:208-220. doi:10.1016/j.actbio.2020.05.020(IF:7.242)
[72] Shang D, Sun D, Shi C, et al. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. Aging Cell. 2020;19(5):e13145. doi:10.1111/acel.13145(IF:7.238)
[73] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[74] Zhou J , Li T , Zhang C , Xiao J , Cui D , Cheng Y . Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. Nanoscale. 2018;10(20):9707-9719. doi:10.1039/c8nr00994e(IF:7.233)
[75] Chen MM, Hu ZL, Ding JH, Du RH, Hu G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson's disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav Immun. 2021;95:310-320. doi:10.1016/j.bbi.2021.04.003(IF:7.217)
[76] Tian Y, Gao S, Wu M, et al. Tobacco Mosaic Virus-Based 1D Nanorod-Drug Carrier via the Integrin-Mediated Endocytosis Pathway. ACS Appl Mater Interfaces. 2016;8(17):10800-10807. doi:10.1021/acsami.6b02801(IF:7.145)
[77] Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D. MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces. 2016;8(2):1447-1457. doi:10.1021/acsami.5b10772(IF:7.145)
[78] Zheng Y, Liu L, Wang Y, et al. Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma. Cell Biosci. 2021;11(1):63. Published 2021 Mar 31. doi:10.1186/s13578-021-00575-8(IF:7.133)
[79] Wang H, Liu YC, Zhu CY, et al. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. J Exp Clin Cancer Res. 2020;39(1):278. Published 2020 Dec 9. doi:10.1186/s13046-020-01792-8(IF:7.068)
[80] Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2020;39(1):149. Published 2020 Aug 3. doi:10.1186/s13046-020-01648-1(IF:7.068)
[81] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[82] Chen Q , Chen Y , Sun Y , et al. Leukocyte-mimicking Pluronic-lipid nanovesicle hybrids inhibit the growth and metastasis of breast cancer. Nanoscale. 2019;11(12):5377-5394. doi:10.1039/c8nr08936a(IF:6.970)
[83] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[84] Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600. Published 2021 Jun 17. doi:10.2147/JIR.S304336(IF:6.922)
[85] Liu J, Gao J, Zhang A, et al. Carbon nanocage-based nanozyme as an endogenous H2O2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 2020;12(42):21674-21686. doi:10.1039/d0nr05945e(IF:6.895)
[86] Zhang Q, Huang Y, Yang R, Mu J, Zhou Z, Sun M. Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomater Sci. 2022;10(13):3637-3646. Published 2022 Jun 28. doi:10.1039/d1bm02022f(IF:6.843)
[87] Zhang L, Zhao J, Dong J, Liu Y, Xuan K, Liu W. GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther. 2021;12(1):225. Published 2021 Apr 6. doi:10.1186/s13287-021-02235-7(IF:6.832)
[88] Du X, Chen S, Cui H, et al. Circular RNA hsa_circ_0083756 promotes intervertebral disc degeneration by sponging miR-558 and regulating TREM1 expression. Cell Prolif. 2022;55(4):e13205. doi:10.1111/cpr.13205(IF:6.831)
[89] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[90] Kang RR, Sun Q, Chen KG, et al. Resveratrol prevents benzo(a)pyrene-induced disruption of mitochondrial homeostasis via the AMPK signaling pathway in primary cultured neurons [published correction appears in Environ Pollut. 2020 Oct;265(Pt A):115331]. Environ Pollut. 2020;261:114207. doi:10.1016/j.envpol.2020.114207(IF:6.793)
[91] Huang D, Guo Y, Li X, et al. Vitamin D3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai [published online ahead of print, 2021 Oct 12]. Cell Biol Toxicol. 2021;10.1007/s10565-021-09647-4. doi:10.1007/s10565-021-09647-4(IF:6.691)
[92] Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers Erlotinib Resistance Through Upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biol. 2021;9:677860. Published 2021 Jul 21. doi:10.3389/fcell.2021.677860(IF:6.684)
[93] Tang X, Sun Y, Xu C, et al. Caffeine Induces Autophagy and Apoptosis in Auditory Hair Cells via the SGK1/HIF-1α Pathway. Front Cell Dev Biol. 2021;9:751012. Published 2021 Nov 16. doi:10.3389/fcell.2021.751012(IF:6.684)
[94] Hu B, Zeng LP, Yang XL, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698. Published 2017 Nov 30. doi:10.1371/journal.ppat.1006698(IF:6.608)
[95] Jin T, Lin J, Gong Y, et al. iPLA2β Contributes to ER Stress-Induced Apoptosis during Myocardial Ischemia/Reperfusion Injury. Cells. 2021;10(6):1446. Published 2021 Jun 9. doi:10.3390/cells10061446(IF:6.600)
[96] Wang B, Ke W, Wang K, et al. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. Oxid Med Cell Longev. 2021;2021:8884922. Published 2021 Feb 10. doi:10.1155/2021/8884922(IF:6.543)
[97] Jiang H, Gao X, Gong J, et al. Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress. Oxid Med Cell Longev. 2018;2018:1724648. Published 2018 Oct 10. doi:10.1155/2018/1724648(IF:6.543)
[98] Ma X, Li X, Di Q, et al. Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomed Pharmacother. 2021;138:111543. doi:10.1016/j.biopha.2021.111543(IF:6.530)
[99] Yao M, Han W, Feng L, et al. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem. 2022;233:114236. doi:10.1016/j.ejmech.2022.114236(IF:6.514)
[100] Wang XR, Wang S, Li WB, et al. Design, synthesis and biological evaluation of novel 2-(4-(1H-indazol-6-yl)-1H-pyrazol-1-yl)acetamide derivatives as potent VEGFR-2 inhibitors. Eur J Med Chem. 2021;213:113192. doi:10.1016/j.ejmech.2021.113192(IF:6.514)
[101] Zou Y, Mei D, Yuan J, et al. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine. 2021;16:1127-1141. Published 2021 Feb 12. doi:10.2147/IJN.S290466(IF:6.400)
[102] Liu H, Jiapaer Z, Meng F, et al. Construction Of High Loading Natural Active Substances Nanoplatform and Application in Synergistic Tumor Therapy. Int J Nanomedicine. 2022;17:2647-2659. Published 2022 Jun 15. doi:10.2147/IJN.S364108(IF:6.400)
[103] Yang X, Zhou Y, Li H, et al. Autophagic flux inhibition, apoptosis, and mitochondrial dysfunction in bile acids-induced impairment of human placental trophoblast. J Cell Physiol. 2022;237(7):3080-3094. doi:10.1002/jcp.30774(IF:6.384)
[104] Liu Y, Liu N, Xu D, et al. Hsa-miR-599 inhibits breast cancer progression via BRD4/Jagged1/Notch1 axis. J Cell Physiol. 2022;237(1):523-531. doi:10.1002/jcp.30548(IF:6.384)
[105] Wu J, Hu X, Liu R, Zhang J, Song A, Luan Y. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J Colloid Interface Sci. 2019;547:30-39. doi:10.1016/j.jcis.2019.03.087(IF:6.361)
[106] Cheng C, Chen X, Wang Y, et al. MSCs‑derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med. 2021;27(1):67. Published 2021 Jul 2. doi:10.1186/s10020-021-00324-0(IF:6.354)
[107] Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. Anal Chem. 2019;91(19):12581-12586. doi:10.1021/acs.analchem.9b03694(IF:6.350)
[108] Xia F, Hou W, Zhang C, et al. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater. 2018;68:308-319. doi:10.1016/j.actbio.2017.12.034(IF:6.319)
[109] Wang Y, Liu B, Wu P, et al. Dietary Selenium Alleviated Mouse Liver Oxidative Stress and NAFLD Induced by Obesity by Regulating the KEAP1/NRF2 Pathway. Antioxidants (Basel). 2022;11(2):349. Published 2022 Feb 10. doi:10.3390/antiox11020349(IF:6.313)
[110] Wang Y, Ding Y, Sun P, et al. Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants (Basel). 2022;11(5):799. Published 2022 Apr 19. doi:10.3390/antiox11050799(IF:6.313)
[111] Xu J, Wang J, Wang X, et al. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages. Cell Death Dis. 2020;11(10):934. Published 2020 Oct 30. doi:10.1038/s41419-020-03139-9(IF:6.304)
[112] Zhao Y, Fan K, Zhu Y, Zhao Y, Cai J, Jin L. Gestational exposure to BDE-209 induces placental injury via the endoplasmic reticulum stress-mediated PERK/ATF4/CHOP signaling pathway. Ecotoxicol Environ Saf. 2022;233:113307. doi:10.1016/j.ecoenv.2022.113307(IF:6.291)
[113] Peng Z, Yang X, Zhang H, Yin M, Luo Y, Xie C. MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum [published online ahead of print, 2021 Aug 20]. Ecotoxicol Environ Saf. 2021;224:112658. doi:10.1016/j.ecoenv.2021.112658(IF:6.291)
[114] Chen Y, Deng J, Liu F, et al. Energy-Free, Singlet Oxygen-Based Chemodynamic Therapy for Selective Tumor Treatment without Dark Toxicity. Adv Healthc Mater. 2019;8(18):e1900366. doi:10.1002/adhm.201900366(IF:6.270)
[115] Li T, Zhou J, Wang L, et al. Photo-Fenton-like Metal-Protein Self-Assemblies as Multifunctional Tumor Theranostic Agent. Adv Healthc Mater. 2019;8(15):e1900192. doi:10.1002/adhm.201900192(IF:6.270)
[116] Yi X, Dai J, Han Y, et al. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun Biol. 2018;1:202. Published 2018 Nov 21. doi:10.1038/s42003-018-0204-6(IF:6.268)
[117] Wu J, He X, Xiong Z, et al. Bruceine H Mediates EGFR-TKI Drug Persistence in NSCLC by Notch3-Dependent β-Catenin Activating FOXO3a Signaling. Front Oncol. 2022;12:855603. Published 2022 Apr 8. doi:10.3389/fonc.2022.855603(IF:6.244)
[118] Meng X, Deng Y, He S, Niu L, Zhu H. m6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesis by Regulating the miR-150-5p/E2F3 Axis. Front Oncol. 2021;11:629947. Published 2021 Feb 18. doi:10.3389/fonc.2021.629947(IF:6.244)
[119] Gao Y, Sun Z, Gu J, et al. Cancer-Associated Fibroblasts Promote the Upregulation of PD-L1 Expression Through Akt Phosphorylation in Colorectal Cancer. Front Oncol. 2021;11:748465. Published 2021 Nov 19. doi:10.3389/fonc.2021.748465(IF:6.244)
[120] Liu Y, Dong Y, He X, et al. piR-hsa-211106 Inhibits the Progression of Lung Adenocarcinoma Through Pyruvate Carboxylase and Enhances Chemotherapy Sensitivity. Front Oncol. 2021;11:651915. Published 2021 Jun 23. doi:10.3389/fonc.2021.651915(IF:6.244)
[121] Xu S, Song Y, Shao Y, Zhou H. Hsa_circ_0060927 Is a Novel Tumor Biomarker by Sponging miR-195-5p in the Malignant Transformation of OLK to OSCC. Front Oncol. 2022;11:747086. Published 2022 Jan 11. doi:10.3389/fonc.2021.747086(IF:6.244)
[122] Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p Promotes Non-Small Cell Lung Cancer Through SLC7A11-Mediated-Ferroptosis. Front Oncol. 2021;11:759346. Published 2021 Oct 13. doi:10.3389/fonc.2021.759346(IF:6.244)
[123] Dai P, Tang Z, Ruan P, Bajinka O, Liu D, Tan Y. Gimap5 Inhibits Lung Cancer Growth by Interacting With M6PR. Front Oncol. 2021;11:699847. Published 2021 Sep 15. doi:10.3389/fonc.2021.699847(IF:6.244)
[124] Zan X, Li S, Wei S, et al. COL8A1 Promotes NSCLC Progression Through IFIT1/IFIT3-Mediated EGFR Activation. Front Oncol. 2022;12:707525. Published 2022 Feb 24. doi:10.3389/fonc.2022.707525(IF:6.244)
[125] Xu D, Yang F, Fan Y, et al. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol. 2021;11:640276. Published 2021 May 25. doi:10.3389/fonc.2021.640276(IF:6.244)
[126] Hu L, Cai X, Dong S, et al. Synthesis and Anticancer Activity of Novel Actinonin Derivatives as HsPDF Inhibitors. J Med Chem. 2020;63(13):6959-6978. doi:10.1021/acs.jmedchem.0c00079(IF:6.205)
[127] Sun YF, Wang Y, Li XD, Wang H. SNHG15, a p53-regulated lncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 axis. Am J Cancer Res. 2022;12(2):816-828. Published 2022 Feb 15. (IF:6.166)
[128] Yu M, Hu X, Yan J, Wang Y, Lu F, Chang J. RIOK2 Inhibitor NSC139021 Exerts Anti-Tumor Effects on Glioblastoma via Inducing Skp2-Mediated Cell Cycle Arrest and Apoptosis. Biomedicines. 2021;9(9):1244. Published 2021 Sep 17. doi:10.3390/biomedicines9091244(IF:6.081)
[129] Liu ZQ, Liu K, Liu ZF, et al. Manganese-induced alpha-synuclein overexpression aggravates mitochondrial damage by repressing PINK1/Parkin-mediated mitophagy [published correction appears in Food Chem Toxicol. 2021 Dec;158:112660]. Food Chem Toxicol. 2021;152:112213. doi:10.1016/j.fct.2021.112213(IF:6.025)
[130] Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton's Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol. 2022;13:864194. Published 2022 Jun 3. doi:10.3389/fphar.2022.864194(IF:5.988)
[131] Zheng Z, Shang Y, Xu R, et al. Ubiquitin specific peptidase 38 promotes the progression of gastric cancer through upregulation of fatty acid synthase. Am J Cancer Res. 2022;12(6):2686-2696. Published 2022 Jun 15. (IF:5.942)
[132] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[133] Zhang Y, Wang X, Ma Z, et al. A potential strategy for in-stent restenosis: Inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion. Mater Sci Eng C Mater Biol Appl. 2020;115:111090. doi:10.1016/j.msec.2020.111090(IF:5.880)
[134] Cui T, Li S, Chen S, Liang Y, Sun H, Wang L. "Stealth" dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. Int J Pharm. 2021;600:120502. doi:10.1016/j.ijpharm.2021.120502(IF:5.875)
[135] Liang H, Chen M, Qi F, et al. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal Transduct Target Ther. 2019;4:23. Published 2019 Jul 19. doi:10.1038/s41392-019-0058-5(IF:5.873)
[136] Luan X, Sun M, Zhao X, Wang J, Han Y, Gao Y. Bisimidazolium Salt Glycosyltransferase Inhibitors Suppress Hepatocellular Carcinoma Progression In Vitro and In Vivo. Pharmaceuticals (Basel). 2022;15(6):716. Published 2022 Jun 5. doi:10.3390/ph15060716(IF:5.863)
[137] Tang Y, Shi C, Qin Y, et al. Network Pharmacology-Based Investigation and Experimental Exploration of the Antiapoptotic Mechanism of Colchicine on Myocardial Ischemia Reperfusion Injury. Front Pharmacol. 2021;12:804030. Published 2021 Dec 16. doi:10.3389/fphar.2021.804030(IF:5.811)
[138] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[139] Zhu L, Zhou H, Xu F, et al. Hepatic Ischemia-Reperfusion Impairs Blood-Brain Barrier Partly Due to Release of Arginase From Injured Liver. Front Pharmacol. 2021;12:724471. Published 2021 Oct 13. doi:10.3389/fphar.2021.724471(IF:5.811)
[140] Liu A, Wang H, Hou X, et al. Combinatory antitumor therapy by cascade targeting of a single drug. Acta Pharm Sin B. 2020;10(4):667-679. doi:10.1016/j.apsb.2019.08.011(IF:5.808)
[141] Peng RR, Wang LL, Gao WY, et al. The 5.8S pre-rRNA maturation factor, M-phase phosphoprotein 6, is a female fertility factor required for oocyte quality and meiosis. Cell Prolif. 2020;53(3):e12769. doi:10.1111/cpr.12769(IF:5.753)
[142] Niu X, Pu S, Ling C, et al. lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif. 2020;53(6):e12818. doi:10.1111/cpr.12818(IF:5.753)
[143] Wang N, Yu M, Fu Y, Ma Z. Blocking ATM Attenuates SKOV3 Cell Proliferation and Migration by Disturbing OGT/OGA Expression via hsa-miR-542-5p. Front Oncol. 2022;12:839508. Published 2022 Jun 20. doi:10.3389/fonc.2022.839508(IF:5.738)
[144] Hu Y, Wang B, Yi K, Lei Q, Wang G, Xu X. IFI35 is involved in the regulation of the radiosensitivity of colorectal cancer cells. Cancer Cell Int. 2021;21(1):290. Published 2021 Jun 3. doi:10.1186/s12935-021-01997-7(IF:5.722)
[145] Zou X, Liu Y, Di J, et al. ZMIZ2 promotes the development of triple-receptor negative breast cancer. Cancer Cell Int. 2022;22(1):52. Published 2022 Jan 31. doi:10.1186/s12935-021-02393-x(IF:5.722)
[146] Chen W, Chen H, Yang ZT, Mao EQ, Chen Y, Chen EZ. Free fatty acids-induced neutrophil extracellular traps lead to dendritic cells activation and T cell differentiation in acute lung injury. Aging (Albany NY). 2021;13(24):26148-26160. doi:10.18632/aging.203802(IF:5.682)
[147] Liu W, Long Q, Zhang W, et al. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 2021;13(15):19760-19775. doi:10.18632/aging.203388(IF:5.682)
[148] Chang L, Gao H, Wang L, et al. Exosomes derived from miR-1228 overexpressing bone marrow-mesenchymal stem cells promote growth of gastric cancer cells. Aging (Albany NY). 2021;13(8):11808-11821. doi:10.18632/aging.202878(IF:5.682)
[149] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[150] Zhu Y, Wang X, Zhou X, Ding L, Liu D, Xu H. DNMT1-mediated PPARα methylation aggravates damage of retinal tissues in diabetic retinopathy mice. Biol Res. 2021;54(1):25. Published 2021 Aug 6. doi:10.1186/s40659-021-00347-1(IF:5.612)
[151] Cui D, Zhang C, Liu B, et al. Regression of Gastric Cancer by Systemic Injection of RNA Nanoparticles Carrying both Ligand and siRNA. Sci Rep. 2015;5:10726. Published 2015 Jul 3. doi:10.1038/srep10726(IF:5.578)
[152] Xu X, Yuan X, Ni J, et al. MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J Cell Physiol. 2021;236(2):1116-1130. doi:10.1002/jcp.29922(IF:5.546)
[153] Lai SY, Guan HM, Liu J, et al. Long noncoding RNA SNHG12 modulated by human papillomavirus 16 E6/E7 promotes cervical cancer progression via ERK/Slug pathway. J Cell Physiol. 2020;235(11):7911-7922. doi:10.1002/jcp.29446(IF:5.546)
[154] Li YR, Peng RR, Gao WY, et al. The ubiquitin ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to ensure oocyte quality. Aging (Albany NY). 2019;11(4):1110-1128. doi:10.18632/aging.101802(IF:5.515)
[155] Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11(18):7830-7846. doi:10.18632/aging.102291(IF:5.515)
[156] Tang XD, Zhang DD, Jia L, Ji W, Zhao YS. lncRNA AFAP1-AS1 Promotes Migration and Invasion of Non-Small Cell Lung Cancer via Up-Regulating IRF7 and the RIG-I-Like Receptor Signaling Pathway. Cell Physiol Biochem. 2018;50(1):179-195. doi:10.1159/000493967(IF:5.500)
[157] Jiang Q, Chen Q, Li C, Gong Z, Li Z, Ding S. ox-LDL-Induced Endothelial Progenitor Cell Oxidative Stress via p38/Keap1/Nrf2 Pathway. Stem Cells Int. 2022;2022:5897194. Published 2022 Jan 31. doi:10.1155/2022/5897194(IF:5.443)
[158] Wu Z, Wu P, Zuo X, et al. LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation [published correction appears in Mol Neurobiol. 2017 Jan 4;:]. Mol Neurobiol. 2017;54(10):7670-7685. doi:10.1007/s12035-016-0246-z(IF:5.397)
[159] Halike X, Li J, Yuan P, et al. The petroleum ether extract of Brassica rapa L. induces apoptosis of lung adenocarcinoma cells via the mitochondria-dependent pathway. Food Funct. 2021;12(20):10023-10039. Published 2021 Oct 19. doi:10.1039/d1fo01547h(IF:5.396)
[160] Huo W, Li H, Zhang Y, Li H. Epigenetic silencing of microRNA-874-3p implicates in erectile dysfunction in diabetic rats by activating the Nupr1/Chop-mediated pathway. FASEB J. 2020;34(1):1695-1709. doi:10.1096/fj.201902086R(IF:5.391)
[161] Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B. 2020;8(36):8368-8382. doi:10.1039/d0tb01391a(IF:5.344)
[162] Zhang J, Yang S, Guan H, Zhou J, Gao Y. Xanthatin synergizes with cisplatin to suppress homologous recombination through JAK2/STAT4/BARD1 axis in human NSCLC cells. J Cell Mol Med. 2021;25(3):1688-1699. doi:10.1111/jcmm.16271(IF:5.310)
[163] Han J, Wang P, Xia X, et al. EGR1 promoted anticancer effects of Scutellarin via regulating LINC00857/miR-150-5p/c-Myc in osteosarcoma. J Cell Mol Med. 2021;25(17):8479-8489. doi:10.1111/jcmm.16809(IF:5.310)
[164] Hang C, Song Y, Li Y, et al. Knockout of MYOM1 in human cardiomyocytes leads to myocardial atrophy via impairing calcium homeostasis. J Cell Mol Med. 2021;25(3):1661-1676. doi:10.1111/jcmm.16268(IF:5.310)
[165] Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. CircPVT1 up-regulation attenuates steroid-induced osteonecrosis of the femoral head through regulating miR-21-5p-mediated Smad7/TGFβ signalling pathway. J Cell Mol Med. 2021;25(10):4608-4622. doi:10.1111/jcmm.16294(IF:5.310)
[166] Shen J, Dong J, Shao F, et al. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine (Lond). 2022;17(9):591-605. doi:10.2217/nnm-2022-0030(IF:5.307)
[167] Gu J, Lin Y, Wang Z, et al. Campylobacter jejuni Cytolethal Distending Toxin Induces GSDME-Dependent Pyroptosis in Colonic Epithelial Cells. Front Cell Infect Microbiol. 2022;12:853204. Published 2022 Apr 27. doi:10.3389/fcimb.2022.853204(IF:5.293)
[168] Wang Z, Liu M, Liu L, Li L, Tan L, Sun Y. The Synergistic Effect of Tacrolimus (FK506) or Everolimus and Azoles Against Scedosporium and Lomentospora Species In Vivo and In Vitro. Front Cell Infect Microbiol. 2022;12:864912. Published 2022 Apr 14. doi:10.3389/fcimb.2022.864912(IF:5.293)
[169] Xu C, Shao T, Shao S, Jin G. High activity, high selectivity and high biocompatibility BODIPY-pyrimidine derivatives for fluorescence target recognition and evaluation of inhibitory activity. Bioorg Chem. 2021;114:105121. doi:10.1016/j.bioorg.2021.105121(IF:5.275)
[170] Sun W, Sun F, Meng J, et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem. 2022;126:105906. doi:10.1016/j.bioorg.2022.105906(IF:5.275)
[171] Qiu CL, Ye ZN, Yan BC, et al. Structurally diverse diterpenoids from Isodon oresbius and their bioactivity. Bioorg Chem. 2022;124:105811. doi:10.1016/j.bioorg.2022.105811(IF:5.275)
[172] Ma Y, Yang X, Han H, et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem. 2021;111:104872. doi:10.1016/j.bioorg.2021.104872(IF:5.275)
[173] Ao M, Hu X, Qian Y, et al. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg Chem. 2021;113:104961. doi:10.1016/j.bioorg.2021.104961(IF:5.275)
[174] Zhao XJ, Zhu HY, Wang XL, et al. Oridonin Ameliorates Traumatic Brain Injury-Induced Neurological Damage by Improving Mitochondrial Function and Antioxidant Capacity and Suppressing Neuroinflammation through the Nrf2 Pathway. J Neurotrauma. 2022;39(7-8):530-543. doi:10.1089/neu.2021.0466(IF:5.269)
[175] Wang QY, Yali-Xiang, Hu QH, Huang SH, Lin J, Zhou QH. Surface charge switchable nano-micelle for pH/redox-triggered and endosomal escape mediated co-delivery of doxorubicin and paclitaxel in treatment of lung adenocarcinoma. Colloids Surf B Biointerfaces. 2022;216:112588. doi:10.1016/j.colsurfb.2022.112588(IF:5.268)
[176] Li W, Xie X, Wu T, et al. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces. 2019;181:305-314. doi:10.1016/j.colsurfb.2019.05.047(IF:5.268)
[177] Liu Y, Zhou Z, Liu Y, et al. H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy. Biomater Sci. 2019;7(12):5359-5368. doi:10.1039/c9bm01354g(IF:5.251)
[178] Hou J, Huang P, Lan C, et al. ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway. Cell Death Discov. 2022;8(1):32. Published 2022 Jan 21. doi:10.1038/s41420-022-00815-x(IF:5.241)
[179] Chen Y, Chen D, Qin Y, et al. TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov. 2022;8(1):35. Published 2022 Jan 24. doi:10.1038/s41420-022-00824-w(IF:5.241)
[180] Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry. 2021;27(53):13418-13425. doi:10.1002/chem.202102016(IF:5.236)
[181] Liu L, Sun X, Guo Y, Ge K. Evodiamine induces ROS-Dependent cytotoxicity in human gastric cancer cells via TRPV1/Ca2+ pathway. Chem Biol Interact. 2022;351:109756. doi:10.1016/j.cbi.2021.109756(IF:5.194)
[182] Zhang J, Yang F, Mei X, et al. Toosendanin and isotoosendanin suppress triple-negative breast cancer growth via inducing necrosis, apoptosis and autophagy. Chem Biol Interact. 2022;351:109739. doi:10.1016/j.cbi.2021.109739(IF:5.194)
[183] Du XF, Cui HT, Pan HH, et al. Role of the miR-133a-5p/FBXO6 axis in the regulation of intervertebral disc degeneration. J Orthop Translat. 2021;29:123-133. Published 2021 Jun 19. doi:10.1016/j.jot.2021.05.004(IF:5.191)
[184] Tan H, Hou N, Liu Y, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine. 2020;27:102192. doi:10.1016/j.nano.2020.102192(IF:5.182)
[185] Li WW, Wang HY, Nie X, Liu YB, Han M, Li BH. Human colorectal cancer cells induce vascular smooth muscle cell apoptosis in an exocrine manner. Oncotarget. 2017;8(37):62049-62056. Published 2017 Jun 27. doi:10.18632/oncotarget.18893(IF:5.168)
[186] Liu H, Lu Z, Shi X, et al. HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression. J Biol Chem. 2021;297(2):100996. doi:10.1016/j.jbc.2021.100996(IF:5.157)
[187] Zhang T, Feng S, Li J, et al. Farnesoid X receptor (FXR) agonists induce hepatocellular apoptosis and impair hepatic functions via FXR/SHP pathway. Arch Toxicol. 2022;96(6):1829-1843. doi:10.1007/s00204-022-03266-6(IF:5.153)
[188] Tian DH, Qin CH, Xu WY, et al. Phenotypic and functional comparison of rat enteric neural crest-derived cells during fetal and early-postnatal stages. Neural Regen Res. 2021;16(11):2310-2315. doi:10.4103/1673-5374.310701(IF:5.135)
[189] Kuang Z, Chen Z, Tu S, et al. Dopamine Suppresses Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells via AKT/GSK-3β/β-Catenin Signaling Pathway. Stem Cells Int. 2022;2022:4154440. Published 2022 Jun 29. doi:10.1155/2022/4154440(IF:5.131)
[190] Fan C, Feng J, Tang C, et al. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther. 2020;11(1):442. Published 2020 Oct 15. doi:10.1186/s13287-020-01948-5(IF:5.116)
[191] Zhou J, Hou J, Rao J, Zhou C, Liu Y, Gao W. Magnetically Directed Enzyme/Prodrug Prostate Cancer Therapy Based on β-Glucosidase/Amygdalin. Int J Nanomedicine. 2020;15:4639-4657. Published 2020 Jun 29. doi:10.2147/IJN.S242359(IF:5.115)
[192] Liu B, Chen D, Wang Y, et al. Adipose improves muscular atrophy caused by Sirtuin1 deficiency by promoting mitochondria synthesis. Int J Biochem Cell Biol. 2022;149:106246. doi:10.1016/j.biocel.2022.106246(IF:5.085)
[193] Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 Attenuated Sepsis-Induced Acute Kidney Injury by Promoting Alternative Macrophage Transition. Front Immunol. 2020;11:1415. Published 2020 Jul 7. doi:10.3389/fimmu.2020.01415(IF:5.085)
[194] Zhou GZ, Li J, Sun YH, Zhang Q, Zhang L, Pei C. Autophagy Delays Apoptotic Cell Death Induced by Siniperca chuatsi Rhabdovirus in Epithelioma Papulosum Cyprinid Cells. Viruses. 2021;13(8):1554. Published 2021 Aug 6. doi:10.3390/v13081554(IF:5.048)
[195] Liu H, Lu J, Hua Y, et al. Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death Dis. 2015;6(1):e1595. Published 2015 Jan 15. doi:10.1038/cddis.2014.555(IF:5.014)
[196] Li W, Xie X, Wu T, et al. Targeted delivery of Auristatin PE to Hep G2 cells using folate – conjugated boron nitride nanotubes. Mater Sci Eng C Mater Biol Appl. 2020;109:110509. doi:10.1016/j.msec.2019.110509(IF:4.959)
[197] Wu M, Deng X, Zhong Y, et al. MafF Is Regulated via the circ-ITCH/miR-224-5p Axis and Acts as a Tumor Suppressor in Hepatocellular Carcinoma. Oncol Res. 2020;28(3):299-309. doi:10.3727/096504020X15796890809840(IF:4.949)
[198] Qian C, Al-Hamyari B, Tang X, et al. Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Mol Pharm. 2021;18(12):4531-4542. doi:10.1021/acs.molpharmaceut.1c00735(IF:4.939)
[199] Wang J, Tan M, Ge J, et al. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif. 2018;51(4):e12452. doi:10.1111/cpr.12452(IF:4.936)
[200] Zhou W, Ji L, Liu X, et al. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury [published online ahead of print, 2021 Dec 1]. Biomed J. 2021;S2319-4170(21)00172-4. doi:10.1016/j.bj.2021.11.012(IF:4.910)
[201] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[202] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[203] Yan YL, Huang ZN, Zhu Z, et al. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol. 2020;10:667. Published 2020 May 21. doi:10.3389/fonc.2020.00667(IF:4.848)
[204] Yan W, Fu X, Gao Y, et al. Synthesis, antibacterial evaluation, and safety assessment of CuS NPs against Pectobacterium carotovorum subsp. carotovorum. Pest Manag Sci. 2022;78(2):733-742. doi:10.1002/ps.6686(IF:4.845)
[205] Deng Y, Zhu H, Xiao L, Liu C, Meng X. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (Albany NY). 2020;13(2):2198-2211. doi:10.18632/aging.202234(IF:4.831)
[206] Li B, Zhu F, He F, et al. Synthesis and biological evaluations of N'-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg Chem. 2020;96:103592. doi:10.1016/j.bioorg.2020.103592(IF:4.831)
[207] Yin H, Wang H, Wang M, et al. CircTCF25 serves as a sponge for miR-206 to support proliferation, migration, and invasion of glioma via the Jak2/p-Stat3/CypB axis. Mol Carcinog. 2022;61(6):558-571. doi:10.1002/mc.23402(IF:4.784)
[208] Wang J , Fang T , Li M , et al. Intracellular delivery of peptide drugs using viral nanoparticles of bacteriophage P22: covalent loading and cleavable release. J Mater Chem B. 2018;6(22):3716-3726. doi:10.1039/c8tb00186c(IF:4.776)
[209] Yang L, Tang J, Yin H, et al. Self-Assembled Nanoparticles for Tumor-Triggered Targeting Dual-Mode NIRF/MR Imaging and Photodynamic Therapy Applications. ACS Biomater Sci Eng. 2022;8(2):880-892. doi:10.1021/acsbiomaterials.1c01418(IF:4.749)
[210] Zhang C, Deng K, Xu D, et al. Fe-Based Theranostic Agents Respond to the Tumor Microenvironment for MRI-Guided Ferroptosis-/Apoptosis-Inducing Anticancer Therapy. ACS Biomater Sci Eng. 2022;8(6):2610-2623. doi:10.1021/acsbiomaterials.1c01626(IF:4.749)
[211] Gu C, Du W, Chai M, et al. Human umbilical cord-derived mesenchymal stem cells affect urea synthesis and the cell apoptosis of human induced hepatocytes by secreting IL-6 in a serum-free co-culture system. Biotechnol J. 2022;17(1):e2100096. doi:10.1002/biot.202100096(IF:4.677)
[212] Xi Z, Qiao Y, Wang J, et al. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103 [retracted in:  J Cell Mol Med. 2021 Feb;25(4):2286]. J Cell Mol Med. 2020;24(2):1451-1459. doi:10.1111/jcmm.14826(IF:4.658)
[213] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[214] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[215] Wang H, Tian Q, Xu J, Xu W, Yao K, Chen X. Cataract-causing G91del mutant destabilised βA3 heteromers formation linking with structural stability and cellular viability [published online ahead of print, 2021 Sep 6]. Br J Ophthalmol. 2021;bjophthalmol-2021-320033. doi:10.1136/bjophthalmol-2021-320033(IF:4.638)
[216] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[217] Asila A, Yang X, Kaisaer Y, Ma L. SNHG16/miR-485-5p/BMP7 axis modulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Gene Med. 2021;23(3):e3296. doi:10.1002/jgm.3296(IF:4.565)
[218] Chen X, Tang Y, Yan J, Li L, Jiang L, Chen Y. Circ_0062270 upregulates EPHA2 to facilitate melanoma progression via sponging miR-331-3p. J Dermatol Sci. 2021;103(3):176-182. doi:10.1016/j.jdermsci.2021.08.005(IF:4.563)
[219] Guo N, Gao C, Liu J, et al. Reversal of Ovarian Cancer Multidrug Resistance by a Combination of LAH4-L1-siMDR1 Nanocomplexes with Chemotherapeutics. Mol Pharm. 2018;15(5):1853-1861. doi:10.1021/acs.molpharmaceut.8b00031(IF:4.556)
[220] Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother. 2020;129:110371. doi:10.1016/j.biopha.2020.110371(IF:4.545)
[221] Liu X , Liu B , Gao S , et al. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J Mater Chem B. 2017;5(11):2078-2085. doi:10.1039/c7tb00100b(IF:4.543)
[222] Wen C, Lin L, Zou R, Lin F, Liu Y. Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle. 2022;21(3):289-303. doi:10.1080/15384101.2021.2019411(IF:4.534)
[223] Zhang H, Luo Z, Tang J, et al. Transcription factor NFIC functions as a tumor suppressor in lung squamous cell carcinoma progression by modulating lncRNA CASC2. Cell Cycle. 2022;21(1):63-73. doi:10.1080/15384101.2021.1995130(IF:4.534)
[224] Xie LB, Chen B, Liao X, et al. LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway. J Cell Mol Med. 2020;24(10):5555-5564. doi:10.1111/jcmm.15211(IF:4.486)
[225] Xue Y, Dongmei Li, Yige Zhang, Hang Gao, Li H. Angelica polysaccharide moderates hypoxia-evoked apoptosis and autophagy in rat neural stem cells by downregulation of BNIP3. Artif Cells Nanomed Biotechnol. 2019;47(1):2492-2499. doi:10.1080/21691401.2019.1623228(IF:4.462)
[226] Chen Y, Qin Y, Dai M, et al. IBSP, a potential recurrence biomarker, promotes the progression of colorectal cancer via Fyn/β-catenin signaling pathway. Cancer Med. 2021;10(12):4030-4045. doi:10.1002/cam4.3959(IF:4.452)
[227] Meng H, Shen M, Li J, et al. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol. 2021;906:174280. doi:10.1016/j.ejphar.2021.174280(IF:4.432)
[228] Peng Z, Wangmu T, Li L, Han G, Huang D, Yi P. Combination of berberine and low glucose inhibits gastric cancer through the PP2A/GSK3β/MCL-1 signaling pathway. Eur J Pharmacol. 2022;922:174918. doi:10.1016/j.ejphar.2022.174918(IF:4.432)
[229] Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer. 2021;21(1):456. Published 2021 Apr 23. doi:10.1186/s12885-021-08202-y(IF:4.430)
[230] Yang Y, Wang D, Li Q, et al. Immune-Enhancing Activity of Aqueous Extracts from Artemisia rupestris L. via MAPK and NF-kB Pathways of TLR4/TLR2 Downstream in Dendritic Cells. Vaccines (Basel). 2020;8(3):525. Published 2020 Sep 13. doi:10.3390/vaccines8030525(IF:4.422)
[231] Xia WP, Chen X, Ru F, et al. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6. Mol Immunol. 2021;139:87-96. doi:10.1016/j.molimm.2021.07.012(IF:4.407)
[232] Wang N, Guo Y, Song L, Tong T, Fan X. Circular RNA intraflagellar transport 80 facilitates endometrial cancer progression through modulating miR-545-3p/FAM98A signaling. J Gynecol Oncol. 2022;33(1):e2. doi:10.3802/jgo.2022.33.e2(IF:4.401)
[233] Yuan S, Xu Y, Yi T, Wang H. The anti-tumor effect of OP-B on ovarian cancer in vitro and in vivo, and its mechanism: An investigation using network pharmacology-based analysis. J Ethnopharmacol. 2022;283:114706. doi:10.1016/j.jep.2021.114706(IF:4.360)
[234] Tian Y, Qi Y, Cai H, Xu M, Zhang Y. Senegenin alleviates Aβ1-42 induced cell damage through triggering mitophagy. J Ethnopharmacol. 2022;295:115409. doi:10.1016/j.jep.2022.115409(IF:4.360)
[235] Wu M, Huang J, Shi J, Shi L, Zeng Q, Wang H. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts In Vivo and In Vitro. J Ethnopharmacol. 2022;293:115321. doi:10.1016/j.jep.2022.115321(IF:4.360)
[236] Li Y, Chen J, Song S. Circ-OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR-558/THBS2 axis. Drug Dev Res. 2022;83(4):1034-1046. doi:10.1002/ddr.21931(IF:4.360)
[237] Yuan FY, Xu F, Fan RZ, et al. Structural Elucidation of Three 9,11-Seco Tetracyclic Triterpenoids Enables the Structural Revision of Euphorol J. J Org Chem. 2021;86(11):7588-7593. doi:10.1021/acs.joc.1c00631(IF:4.354)
[238] Li W, Xu J, Cheng L, et al. RelB promotes the migration and invasion of prostate cancer DU145 cells via exosomal ICAM1 in vitro. Cell Signal. 2022;91:110221. doi:10.1016/j.cellsig.2021.110221(IF:4.315)
[239] Shi L, Zhang Y, Xia Y, Li C, Song Z, Zhu J. MiR-150-5p protects against septic acute kidney injury via repressing the MEKK3/JNK pathway. Cell Signal. 2021;86:110101. doi:10.1016/j.cellsig.2021.110101(IF:4.315)
[240] Wang Q, Liang D, Shen P, Yu Y, Yan Y, You W. Hsa_circ_0092276 promotes doxorubicin resistance in breast cancer cells by regulating autophagy via miR-348/ATG7 axis. Transl Oncol. 2021;14(8):101045. doi:10.1016/j.tranon.2021.101045(IF:4.243)
[241] Zhu J, Luo JE, Chen Y, Wu Q. Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/CBX2 axis in ovarian cancer. J Ovarian Res. 2021;14(1):136. Published 2021 Oct 14. doi:10.1186/s13048-021-00888-9(IF:4.234)
[242] Chen R, Liang F, Yan J, Wang Y. CircCDK17 knockdown inhibits tumor progression and cell glycolysis by downregulaing YWHAZ expression through sponging miR-1294 in cervical cancer. J Ovarian Res. 2022;15(1):24. Published 2022 Feb 15. doi:10.1186/s13048-022-00952-y(IF:4.234)
[243] Liu G, Xu X, Jiang L, et al. Targeted Antitumor Mechanism of C-PC/CMC-CD55sp Nanospheres in HeLa Cervical Cancer Cells. Front Pharmacol. 2020;11:906. Published 2020 Jun 18. doi:10.3389/fphar.2020.00906(IF:4.225)
[244] Liu Z, Zhu Q, Song E, Song Y. Polybrominated diphenyl ethers quinone exhibits neurotoxicity by inducing DNA damage, cell cycle arrest, apoptosis and p53-driven adaptive response in microglia BV2 cells. Toxicology. 2021;457:152807. doi:10.1016/j.tox.2021.152807(IF:4.221)
[245] Xiao L, Yuan W, Huang C, Luo Q, Xiao R, Chen ZH. LncRNA PCAT19 induced by SP1 and acted as oncogene in gastric cancer competitively binding to miR429 and upregulating DHX9. J Cancer. 2022;13(1):102-111. Published 2022 Jan 1. doi:10.7150/jca.61961(IF:4.207)
[246] Xu H, Ma Z, Mo X, et al. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer. 2022;13(7):2226-2237. Published 2022 Apr 11. doi:10.7150/jca.66020(IF:4.207)
[247] Zhu L, Zhou D, Guo T, et al. LncRNA GAS5 inhibits Invasion and Migration of Lung Cancer through influencing EMT process. J Cancer. 2021;12(11):3291-3298. Published 2021 Apr 2. doi:10.7150/jca.56218(IF:4.207)
[248] Hu H, Yin S, Ma R, et al. CREBBP knockdown suppressed proliferation and promoted chemo-sensitivity via PERK-mediated unfolded protein response in ovarian cancer. J Cancer. 2021;12(15):4595-4603. Published 2021 Jun 1. doi:10.7150/jca.56135(IF:4.207)
[249] Li K, Li R, Ni Y, et al. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med. 2018;16(1):203. Published 2018 Jul 20. doi:10.1186/s12967-018-1575-7(IF:4.197)
[250] Zhang K, Zhou H, Yan B, Cao X. TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma. Cancer Cell Int. 2020;20:148. Published 2020 May 6. doi:10.1186/s12935-020-01224-9(IF:4.175)
[251] Chen Z, Chen C, Zhou T, et al. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int. 2020;20:337. Published 2020 Jul 23. doi:10.1186/s12935-020-01427-0(IF:4.175)
[252] Deng Q, Wu M, Deng J. USP36 promotes tumor growth of non-small cell lung cancer via increasing KHK-A expression by regulating c-MYC-hnRNPH1/H2 axis. Hum Cell. 2022;35(2):694-704. doi:10.1007/s13577-022-00677-6(IF:4.174)
[253] Guo T, Yuan D, Zhang W, et al. Upregulation of long noncoding RNA XIST has anticancer effects on ovarian cancer through sponging miR-106a. Hum Cell. 2021;34(2):579-587. doi:10.1007/s13577-020-00469-w(IF:4.174)
[254] Cheng L, Yu P, Li F, et al. Human umbilical cord-derived mesenchymal stem cell-exosomal miR-627-5p ameliorates non-alcoholic fatty liver disease by repressing FTO expression. Hum Cell. 2021;34(6):1697-1708. doi:10.1007/s13577-021-00593-1(IF:4.174)
[255] Zhang H, Pan Z, Ju J, et al. DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J Anim Sci Biotechnol. 2020;11:77. Published 2020 Aug 5. doi:10.1186/s40104-020-00489-4(IF:4.167)
[256] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[257] Hong Y, Liu N, Zhou R, et al. Combination Therapy Using Kartogenin-Based Chondrogenesis and Complex Polymer Scaffold for Cartilage Defect Regeneration. ACS Biomater Sci Eng. 2020;6(11):6276-6284. doi:10.1021/acsbiomaterials.0c00724(IF:4.152)
[258] Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther. 2021;14:3151-3165. Published 2021 May 13. doi:10.2147/OTT.S291823(IF:4.147)
[259] Sun S, Wang P, Ren L, Wang H, Zhan Y, Shan S. Sevoflurane Suppresses Colon Cancer Cell Malignancy by Regulating circ-PI4KA. Onco Targets Ther. 2021;14:3319-3333. Published 2021 May 20. doi:10.2147/OTT.S295552(IF:4.147)
[260] Zhang Q, Xu L, Wang J, et al. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther. 2021;14:1187-1204. Published 2021 Feb 22. doi:10.2147/OTT.S288799(IF:4.147)
[261] Yue Q, Xu Y, Deng X, et al. Circ-PITX1 Promotes the Progression of Non-Small Cell Lung Cancer Through Regulating the miR-1248/CCND2 Axis. Onco Targets Th

重组FITC标记人FOLR1蛋白 Recombinant FITC-Labeled Human FOLR1 Protein,His-Avi Tag

重组FITC标记人FOLR1蛋白 Recombinant FITC-Labeled Human FOLR1 Protein,His-Avi Tag

产品说明书

FAQ

COA

已发表文献

 

性能参数

分子别名(Synonyms)

FR-alpha; FR alpha; FR α; FOLR; FOLR1; FBP; Folbp1; KB cells FBP; MOv18; Folate receptor 1; Fbp1; Folate receptor alpha;

表达区间及表达系统(Source)

FITC-Labeled Human FOLR1 Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Arg25-Met233.[Accession | P15328]

分子量大小(Molecular Weight)

The protein has a predicted MW of 27.5 kDa. Due to glycosylation, the protein migrates to 37-47 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

活性(Activity)

ELISA Data: Immobilized FITC-Labeled Human FOLR1, His Tag at 0.5μg/ml (100μl/well) on the plate. Dose response curve for Anti-FOLR1 Antibody, hFc Tag with the EC50 of 15.0ng/ml determined by ELISA.

制剂(Formulation)

Supplied as 0.22 μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

重组FITC标记人FOLR1蛋白 Recombinant FITC-Labeled Human FOLR1 Protein,His-Avi Tag

暂无内容

重组FITC标记人FOLR1蛋白 Recombinant FITC-Labeled Human FOLR1 Protein,His-Avi Tag

暂无内容

 

性能参数

分子别名(Synonyms)

FR-alpha; FR alpha; FR α; FOLR; FOLR1; FBP; Folbp1; KB cells FBP; MOv18; Folate receptor 1; Fbp1; Folate receptor alpha;

表达区间及表达系统(Source)

FITC-Labeled Human FOLR1 Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Arg25-Met233.[Accession | P15328]

分子量大小(Molecular Weight)

The protein has a predicted MW of 27.5 kDa. Due to glycosylation, the protein migrates to 37-47 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

活性(Activity)

ELISA Data: Immobilized FITC-Labeled Human FOLR1, His Tag at 0.5μg/ml (100μl/well) on the plate. Dose response curve for Anti-FOLR1 Antibody, hFc Tag with the EC50 of 15.0ng/ml determined by ELISA.

制剂(Formulation)

Supplied as 0.22 μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

重组FITC标记人FOLR1蛋白 Recombinant FITC-Labeled Human FOLR1 Protein,His-Avi Tag

暂无内容

重组FITC标记人FOLR1蛋白 Recombinant FITC-Labeled Human FOLR1 Protein,His-Avi Tag

暂无内容

重组FITC标记人类 HLA-A*11:01&B2M&KRAS G12V(VVVGAVGVGK)单体蛋白 Recombinant FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein,His-Avi Tag

重组FITC标记人类 HLA-A*11:01&B2M&KRAS G12V(VVVGAVGVGK)单体蛋白 Recombinant FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein,His-Avi Tag

产品说明书

FAQ

COA

已发表文献

 

性能参数

分子别名(Synonyms)

MHC; KRAS; K-Ras 2; KRAS2; C-K-RAS; CFC2; K-RAS2A; K-RAS2B; K-RAS4A; K-RAS4B; KRAS1; KRAS2; NS; NS3; RASK2; GTPase Kras; KI-RAS; RALD

表达区间及表达系统(Source)

FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Gly25-Thr305(HLA-A*11:01), Ile21-Met119(B2M) and VVVGAVGVGK peptide.[Accession | AAV53343.1(HLA-A*11:01)&P61769(B2M)&VVVGAVGVGK]

分子量大小(Molecular Weight)

The protein has a predicted MW of 50.3 kDa. Due to glycosylation, the protein migrates to 51-65 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

制剂(Formulation)

Supplied as 0.22μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

重组FITC标记人类 HLA-A*11:01&B2M&KRAS G12V(VVVGAVGVGK)单体蛋白 Recombinant FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein,His-Avi Tag

暂无内容

重组FITC标记人类 HLA-A*11:01&B2M&KRAS G12V(VVVGAVGVGK)单体蛋白 Recombinant FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein,His-Avi Tag

暂无内容

 

性能参数

分子别名(Synonyms)

MHC; KRAS; K-Ras 2; KRAS2; C-K-RAS; CFC2; K-RAS2A; K-RAS2B; K-RAS4A; K-RAS4B; KRAS1; KRAS2; NS; NS3; RASK2; GTPase Kras; KI-RAS; RALD

表达区间及表达系统(Source)

FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Gly25-Thr305(HLA-A*11:01), Ile21-Met119(B2M) and VVVGAVGVGK peptide.[Accession | AAV53343.1(HLA-A*11:01)&P61769(B2M)&VVVGAVGVGK]

分子量大小(Molecular Weight)

The protein has a predicted MW of 50.3 kDa. Due to glycosylation, the protein migrates to 51-65 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE and HPLC.

制剂(Formulation)

Supplied as 0.22μm filtered solution in PBS (pH 7.4).

 

储存条件

The product should be stored at -85~-65℃ for 1 year from date of receipt.

Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

重组FITC标记人类 HLA-A*11:01&B2M&KRAS G12V(VVVGAVGVGK)单体蛋白 Recombinant FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein,His-Avi Tag

暂无内容

重组FITC标记人类 HLA-A*11:01&B2M&KRAS G12V(VVVGAVGVGK)单体蛋白 Recombinant FITC-Labeled Human HLA-A*11:01&B2M&KRAS G12V (VVVGAVGVGK) Monomer Protein,His-Avi Tag

暂无内容

emfret M011-1(FITC)说明书

世界*实验材料供应商 emfret 上海金畔生物为其中国代理, emfret 在一直是行业的*,一直为广大科研客户提供zui为的产品和服务,上海金畔生物一直秉承为中国科研客户带来的产品,的服务, emfret 就是为了给广大科研客户带来更加完善的产品和服务,您的满意将是我们zui大的收获

 emfret 中国代理, emfret 上海代理, emfret 北京代理,emfret 广东代理, emfret 江苏代理emfret 湖北代理,emfret 天津,emfret 黑龙江代理,emfret 内蒙古代理,emfret 吉林代理,emfret 福建代理,emfret 江苏代理, emfret 浙江代理, emfret 四川代理,

 

德国EMFRET公司专注心血管和血液系统研究用抗体研发和生产,供应的抗体包括清除血液中血小板、流式细胞术鉴定分析小鼠血小板表面糖蛋白,EMFRET公司的抗体不仅适用于流失分析、WB检测,还可用于免疫组化/免疫荧光及免疫共沉淀检测。

JAQ1 – 用于分析GPVI的多功能抗体

单克隆抗体JAQ1与血小板胶原蛋白受体GPVI反应。一方面,它抑制胶原蛋白诱导的小鼠血小板聚集,而用二抗交联JAQ1诱导血小板活化和聚集。

JAQ1可用于免疫沉淀,丙酮固定冷冻切片的免疫组织化学分析,免疫荧光染色以及非还原条件下的Western印迹分析。

目录号M011-0(纯化)

目录号M011-1(FITC)

 

相关产品信息如下:

货号 抗原类型 克隆方式 表型 产品形式 应用 规格
M011-0 GPVI JAQ1 Rat IgG2a 纯化 IP, IHC, WB 0.1 mg
M011-1 GPVI JAQ1 Rat IgG2a FITC FC, IHC 1.5 ml; 300 tests

 

重组FITC标记人Her3/ErbB3蛋白 Recombinant FITC-Labeled Human Her3/ErbB3 Protein,His-Avi Tag

重组FITC标记人Her3/ErbB3蛋白 Recombinant FITC-Labeled Human Her3/ErbB3 Protein,His-Avi Tag

产品说明书

FAQ

COA

已发表文献

 

性能参数

分子别名(Synonyms)

ErbB3; ErbB-3; HER3; HER3c-erbB-3; LCCS2; MDA-BF-1; MGC88033; p180-ErbB3; p45-sErbB3; p85-sErbB3; ERBB3

表达区间及表达系统(Source)

FITC-Labeled Human Her3/ErbB3 Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Ser20-Thr643.[Accession | P21860-1]

分子量大小(Molecular Weight)

The protein has a predicted MW of 71.6 kDa. Due to glycosylation, the protein migrates to 72-75 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE

制剂(Formulation)

Lyophilized from 0.22 μm filtered solution in HER-HM403F. Normally 8% trehalose is added as protectant before lyophilization.

重构方法(Reconstitution)

Centrifuge the tube before opening. Reconstituting to a concentration more than 100 μg/ml is recommended. Dissolve the lyophilized protein in distilled water.

 

储存条件

1.The product should be stored at -25~-15℃ for 1 year from date of receipt.

2.2-7 days, 2 ~ 8 °C under sterile conditions after reconstitution.

3.3 -6 months, -85~-65℃ under sterile conditions after reconstitution.

4.Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.

 

性能参数

分子别名(Synonyms)

ErbB3; ErbB-3; HER3; HER3c-erbB-3; LCCS2; MDA-BF-1; MGC88033; p180-ErbB3; p45-sErbB3; p85-sErbB3; ERBB3

表达区间及表达系统(Source)

FITC-Labeled Human Her3/ErbB3 Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus. It contains Ser20-Thr643.[Accession | P21860-1]

分子量大小(Molecular Weight)

The protein has a predicted MW of 71.6 kDa. Due to glycosylation, the protein migrates to 72-75 kDa based on SDS-PAGE result.

内毒素(Endotoxin)

Less than 1EU per μg by the LAL method.

纯度(Purity)

> 95% as determined by SDS-PAGE

制剂(Formulation)

Lyophilized from 0.22 μm filtered solution in HER-HM403F. Normally 8% trehalose is added as protectant before lyophilization.

重构方法(Reconstitution)

Centrifuge the tube before opening. Reconstituting to a concentration more than 100 μg/ml is recommended. Dissolve the lyophilized protein in distilled water.

 

储存条件

1.The product should be stored at -25~-15℃ for 1 year from date of receipt.

2.2-7 days, 2 ~ 8 °C under sterile conditions after reconstitution.

3.3 -6 months, -85~-65℃ under sterile conditions after reconstitution.

4.Recommend to aliquot the protein into smaller quantities when first used and avoid repeated freeze-thaw cycles.

 

注意事项

1.Please operate with lab coats and disposable gloves,for your safety.

2.This product is for research use only.