MGI®即用型2×高保真扩增预混液|2×Ultima HF Amplification Mix for MGI®

MGI®即用型2×高保真扩增预混液|2×Ultima HF Amplification Mix for MGI®

产品说明书

FAQ

COA

已发表文献

2× Ultima HF Amplification Mix for MGI®是即用型2×预混合溶液,包含High-Fidelity DNA Polymerase(保真度是普通pfu DNA聚合酶的6倍,扩增速度达15 sec/kbdNTP以及针对高通量测序文库扩增而精心优化的缓冲体系具有快速简便、灵敏度高、特异性强、稳定性好等优点。进行文库扩增反应时体系只需加入引物和模板即可,简化了实验操作步骤,减少了人为误差,提高了实验通量和结果的重复性。此外,本产品还含有特异保护剂使得预混液反复冻融后仍可维持稳定活性。

本产品已Hieff NGS® Fast-Pace End Repair/dA-Tailing ModuleCat#12608),Hieff NGS® FastPace DNA Ligation ModuleCat#12607)共同用于DNA文库构建,通过MGI®高通量平台测序验证其有效性。产品中提供的所有试剂组分均经过严格质检,最高程度保障产品优异性能与批间稳定性。

产品应用

基因克隆;复杂DNA模板扩增;高通量建库扩增。

质量控制

核酸外切酶残留检测:20 μL本品和0.6 μg λDNA -HindIII,37℃下孵育4 h,DNA的电泳谱带无变化。

核酸内切酶残留检测:20 μL本品和1 μg λDNA,37℃温育4 h,DNA的电泳谱带无变化。

大肠杆菌残留DNA检测:50 μL体系中,加入25 μL本品,以无菌ddH2O为模板,扩增E.coil 16s rDNA基因。30个循环后扩增产物进行1%琼脂糖凝胶电泳,EB染色,无扩增条带。

运输与保存方法

冰袋运输。-20ºC保存。

注意事项

1)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
2)本产品仅作科研用途!

 

文库扩增反应体系(冰上配制)

1. 将表1中试剂解冻后颠倒混匀,置于冰上备用

2. 于无菌PCR管中配制1所示反应体系

1 PCR扩增反应体系

名称

体积(μL)

2× Ultima HF Amplification Mix for MGI®

25

Primer 1

2.5

Primer 2

2.5

Adapter Ligated DNA

20

3. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。

4. 将PCR管置于PCR仪中,设置2所示反应程序,进行PCR扩增

2 PCR扩增反应程序

温度

时间

循环数

98°C

1 min

1

98°C

10 sec

1~15(根据实验要求)

60°C

30 sec

72°C

30 sec

72°C

5 min

1

4°C

Hold

相关产品

建库试剂盒

产品编号

规格

Hieff  NGS® UltimaTM DNA Library Prep Kit for MGI®

13310ES16/96

16/96 T

Hieff NGS® MaxUp II Dual-mode mRNA Library Prep Kit for MGI®

13331ES16/96

16/96 T

Hieff NGS® MaxUpⅡDual-mode mRNA Library Prep Kit for Illumina®

12300ES24/96

24/96 T

Hieff NGS® Ultima DNA Library Prep Kit for Illumina®

12199ES24/96

24/96 T

Hieff NGS® MaxUpⅡDNA Library Prep Kit for Illumina®

12200ES24/96

24/96T

Hieff NGS® OnePotⅡDNA Library Prep Kit for Illumina®

12204ES24/96

24/96 T

Hieff NGS® Fast Tagment DNA Library Prep Kit for Illumina®

12206ES24/96

24/96 T

文库构建磁珠

产品编号

规格

Hieff NGS® cfDNA Clean Beads(100~200 bp)

12599ES08/56

5/60 mL

Hieff NGS® Smarter DNA Clean beads (50 bp以上)

12600ES08/56

5/60 mL

Hieff NGS® DNA Selection Beads(Superior AMPure XP alternative)

12601ES08/56

5/60 mL

Hieff NGS® mRNA Isolation Master Kit

12603ES24/96

24/96 T

建库接头

产品编号

规格

Hieff NGS® Complete Adapter Kit for MGI, Set 1

13360ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 2

13361ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 3

13362ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 4

13363ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 5

13364ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 6

13365ES04/16/96

16×4/×16/×100 T

建库模块

产品编号

规格

Hieff NGS® Fast-PaceTM DNA Cyclization Kit for MGI®

13341ES16/96

16/96 T

Hieff NGS® Fast-Pace DNA Ligation Module

12607ES24/96

24/96 T

Hieff NGS® Fast-Pace End Repair/dA-Tailing Module

12608ES24/96

24/96 T

2×Super Canace®Ⅱ High-Fidelity Mix for Library Amplification

12621ES24/96

24/96 T

Hieff NGS® Dual-Mode cDNA Synthesis Kit

12250ES24/96

24/96 T

文库定量

产品编号

规格

Hieff NGS® Library Quantification Kit for Illumina®, qPCR Master Mix

12302ES05

500 T

Hieff NGS® Library Quantification Kit for Illumina®, DNA Standard (1-6)

12307ES09

6×96 μL

dsDNA HS Assay Kit for Qubit® 

12640ES60/76

100/500 T

多重PCR定制咨询

 

HB200310

MGI®即用型2×高保真扩增预混液|2×Ultima HF Amplification Mix for MGI®

暂无内容

MGI®即用型2×高保真扩增预混液|2×Ultima HF Amplification Mix for MGI®

暂无内容

2× Ultima HF Amplification Mix for MGI®是即用型2×预混合溶液,包含High-Fidelity DNA Polymerase(保真度是普通pfu DNA聚合酶的6倍,扩增速度达15 sec/kbdNTP以及针对高通量测序文库扩增而精心优化的缓冲体系具有快速简便、灵敏度高、特异性强、稳定性好等优点。进行文库扩增反应时体系只需加入引物和模板即可,简化了实验操作步骤,减少了人为误差,提高了实验通量和结果的重复性。此外,本产品还含有特异保护剂使得预混液反复冻融后仍可维持稳定活性。

本产品已Hieff NGS® Fast-Pace End Repair/dA-Tailing ModuleCat#12608),Hieff NGS® FastPace DNA Ligation ModuleCat#12607)共同用于DNA文库构建,通过MGI®高通量平台测序验证其有效性。产品中提供的所有试剂组分均经过严格质检,最高程度保障产品优异性能与批间稳定性。

产品应用

基因克隆;复杂DNA模板扩增;高通量建库扩增。

质量控制

核酸外切酶残留检测:20 μL本品和0.6 μg λDNA -HindIII,37℃下孵育4 h,DNA的电泳谱带无变化。

核酸内切酶残留检测:20 μL本品和1 μg λDNA,37℃温育4 h,DNA的电泳谱带无变化。

大肠杆菌残留DNA检测:50 μL体系中,加入25 μL本品,以无菌ddH2O为模板,扩增E.coil 16s rDNA基因。30个循环后扩增产物进行1%琼脂糖凝胶电泳,EB染色,无扩增条带。

运输与保存方法

冰袋运输。-20ºC保存。

注意事项

1)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
2)本产品仅作科研用途!

 

文库扩增反应体系(冰上配制)

1. 将表1中试剂解冻后颠倒混匀,置于冰上备用

2. 于无菌PCR管中配制1所示反应体系

1 PCR扩增反应体系

名称

体积(μL)

2× Ultima HF Amplification Mix for MGI®

25

Primer 1

2.5

Primer 2

2.5

Adapter Ligated DNA

20

3. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。

4. 将PCR管置于PCR仪中,设置2所示反应程序,进行PCR扩增

2 PCR扩增反应程序

温度

时间

循环数

98°C

1 min

1

98°C

10 sec

1~15(根据实验要求)

60°C

30 sec

72°C

30 sec

72°C

5 min

1

4°C

Hold

相关产品

建库试剂盒

产品编号

规格

Hieff  NGS® UltimaTM DNA Library Prep Kit for MGI®

13310ES16/96

16/96 T

Hieff NGS® MaxUp II Dual-mode mRNA Library Prep Kit for MGI®

13331ES16/96

16/96 T

Hieff NGS® MaxUpⅡDual-mode mRNA Library Prep Kit for Illumina®

12300ES24/96

24/96 T

Hieff NGS® Ultima DNA Library Prep Kit for Illumina®

12199ES24/96

24/96 T

Hieff NGS® MaxUpⅡDNA Library Prep Kit for Illumina®

12200ES24/96

24/96T

Hieff NGS® OnePotⅡDNA Library Prep Kit for Illumina®

12204ES24/96

24/96 T

Hieff NGS® Fast Tagment DNA Library Prep Kit for Illumina®

12206ES24/96

24/96 T

文库构建磁珠

产品编号

规格

Hieff NGS® cfDNA Clean Beads(100~200 bp)

12599ES08/56

5/60 mL

Hieff NGS® Smarter DNA Clean beads (50 bp以上)

12600ES08/56

5/60 mL

Hieff NGS® DNA Selection Beads(Superior AMPure XP alternative)

12601ES08/56

5/60 mL

Hieff NGS® mRNA Isolation Master Kit

12603ES24/96

24/96 T

建库接头

产品编号

规格

Hieff NGS® Complete Adapter Kit for MGI, Set 1

13360ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 2

13361ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 3

13362ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 4

13363ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 5

13364ES04/16/96

16×4/×16/×100 T

Hieff NGS® Complete Adapter Kit for MGI, Set 6

13365ES04/16/96

16×4/×16/×100 T

建库模块

产品编号

规格

Hieff NGS® Fast-PaceTM DNA Cyclization Kit for MGI®

13341ES16/96

16/96 T

Hieff NGS® Fast-Pace DNA Ligation Module

12607ES24/96

24/96 T

Hieff NGS® Fast-Pace End Repair/dA-Tailing Module

12608ES24/96

24/96 T

2×Super Canace®Ⅱ High-Fidelity Mix for Library Amplification

12621ES24/96

24/96 T

Hieff NGS® Dual-Mode cDNA Synthesis Kit

12250ES24/96

24/96 T

文库定量

产品编号

规格

Hieff NGS® Library Quantification Kit for Illumina®, qPCR Master Mix

12302ES05

500 T

Hieff NGS® Library Quantification Kit for Illumina®, DNA Standard (1-6)

12307ES09

6×96 μL

dsDNA HS Assay Kit for Qubit® 

12640ES60/76

100/500 T

多重PCR定制咨询

 

HB200310

MGI®即用型2×高保真扩增预混液|2×Ultima HF Amplification Mix for MGI®

暂无内容

MGI®即用型2×高保真扩增预混液|2×Ultima HF Amplification Mix for MGI®

暂无内容

病原体多重PCR预混液(4×Multiplex PCR Master Mix)

病原体多重PCR预混液(4×Multiplex PCR Master Mix)

产品说明书

FAQ

COA

已发表文献

 

本产品适用于多重PCR实验。4×Multiplex PCR Master Mix for Pathogen以热启动多重Taq酶制剂与4×扩增缓冲液为组分配置成预混液。本预混液可快速便捷地用于多重PCR反应,扩增子GC含量25-75%范围内可以有效扩增。具备高均一性、高特异性和高灵敏度的特点,同时严控背景菌。本试剂可兼容30~100对以内不同大小片段的多重扩增,也可用于进行数千重及以上扩增子的捕获。可应用病原微生物检测、环境微生物鉴定、食品安全检测等多个应用场景。

 

运输与保存方式

冰袋运输。-25 ~ -15储存,有效期2年。

 

实验流程

  1. 推荐反应体系:

一轮反应体系

组分

体积(μL)

终浓度

4×Hieff® Multiplex PCR Master Mix for Pathogen

7.5

1×

Primer mix

x

0.02 μM-0.5 μM

模板DNA

x

1 ng-400 ng

无菌超纯水

x

总体积

To30

 

【注】

1上表中DNA量和引物浓度均为推荐用量和浓度,可根据具体实验情况进行调整最适浓度。

2)参考建议:每条引物的浓度可在0.02 μM-0.5 μM范围内进行调整。

3)预混液中已经包含扩增所需要的酶、dNTP、盐离子等,无需额外添加。

二轮反应体系

组分

体积(μL

终浓度

2×Hieff® Multiplex PCR Master Mix for Pathogen(Cat.13581)

15

1×

Primer Index mix

4(~6 pmol)

 

一轮纯化产物

11

 

无菌超纯水

x

总体积

To 30

 

 

  1. 推荐反应程序:

循环步骤

温度(℃)

时间

循环数

预变性

95

3 min

1

变性

95

30 sec

X

退火

60℃

30 sec

延伸

72

30 sec

终延伸

72

3 min

 

暂存

4℃

1

【注】

  1. 退火时间可以根据Panel种类不同,进行适当延长,或者是梯度退火,比如64℃ 1 min,60℃ 1 min;
  2. 延伸时间以最长片段为准。延伸时间太长会导致非特异性扩增增多,可通过缩短延伸时间来提高扩增特异性,延伸时间不少于30 sec。 
  3. 针对模板含量较低的样本,可通过增加循环数提高扩增产出。
  4. Panel引物重数较多时可增加退火时间,调整梯度退火程序,或者根据已有Panel的合适的PCR反应程序进行测试。
  1. 循环数推荐:

单管引物重数

推荐循环数

10 ng gDNA )

退火延伸时间

一轮

二轮

10-50

10~28

18~28

30 s~2 min

50-200

10~28

16~28

30 s~2 min

200-800

10~28

14~28

30 s~2 min

800以上

10~28

12~28

30 s~4 min

【注】

上表是基于10 ng gDNA进行的一轮及二轮循环数的推荐;当投入量大于10 ng,二轮的相应的循环数可以减少;当投入量小于10 ng,一,二轮的相应的循环数要相应的增加

  1. 多重扩增引物纯化

一轮 PCR 产物 0.9×磁珠纯化

1) 准备工作:将 Hieff NGS® DNA Selection Beads 磁珠由冰箱中取出,室温平衡至少 30 min。 配制 80%乙醇。

2) 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3) 吸取 27 μL Hieff NGS® DNA Selection Beads(0.9×,Beads:DNA=0.9:1)至一轮 PCR 产物中,室温孵育 5 min。

4) 将 PCR 管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约 5 min),小心移除上清。

5) 保持 PCR 管始终置于磁力架中,加入 200 μL 新鲜配制的 80%乙醇漂洗磁珠,室温孵育 30 sec 后,小心移除上清。

6) 重复步骤 5,总计漂洗两次。

7) 保持 PCR 管始终置于磁力架中,开盖空气干燥磁珠至刚刚出现龟裂(不超过 5min)。

8) 直接加入 11 μL ddH2O,将 PCR 管从磁力架中取出,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置 5 min。进入下一步反应。

二轮 PCR 产物 0.9×磁珠纯化

1) 准备工作:将 Hieff NGS® DNA Selection Beads 磁珠由冰箱中取出,室温平衡至少 30 min。 配制 80%乙醇。

2) 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3) 吸取 27 μL Hieff NGS® DNA Selection Beads(0.9×,Beads:DNA=0.9:1)至一轮 PCR 产物中,室温孵育 5 min。

4) 将 PCR 管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约 5 min),小心移除上清。

5) 保持 PCR 管始终置于磁力架中,加入 200 μL 新鲜配制的 80%乙醇漂洗磁珠,室温孵育 30 sec 后,小心移除上清。

6) 重复步骤 5,总计漂洗两次。

7) 磁珠晾干后,将PCR管从磁力架上取下,加入30 μL Nuclease-free ddH2O覆盖磁珠,使用移液器吹打混匀。室温孵育2 min。如果磁珠干燥开裂,适当延长孵育时间。

8)将PCR管短暂离心收集后置于磁力架中,分离磁珠和液体直到溶液澄清(约5 min)。 小心吸取25 μL上清转移至新的EP管中,继续进行下一步反应。

 

HB230308

病原体多重PCR预混液(4×Multiplex PCR Master Mix)

暂无内容

病原体多重PCR预混液(4×Multiplex PCR Master Mix)

暂无内容

 

本产品适用于多重PCR实验。4×Multiplex PCR Master Mix for Pathogen以热启动多重Taq酶制剂与4×扩增缓冲液为组分配置成预混液。本预混液可快速便捷地用于多重PCR反应,扩增子GC含量25-75%范围内可以有效扩增。具备高均一性、高特异性和高灵敏度的特点,同时严控背景菌。本试剂可兼容30~100对以内不同大小片段的多重扩增,也可用于进行数千重及以上扩增子的捕获。可应用病原微生物检测、环境微生物鉴定、食品安全检测等多个应用场景。

 

运输与保存方式

冰袋运输。-25 ~ -15储存,有效期2年。

 

实验流程

  1. 推荐反应体系:

一轮反应体系

组分

体积(μL)

终浓度

4×Hieff® Multiplex PCR Master Mix for Pathogen

7.5

1×

Primer mix

x

0.02 μM-0.5 μM

模板DNA

x

1 ng-400 ng

无菌超纯水

x

总体积

To30

 

【注】

1上表中DNA量和引物浓度均为推荐用量和浓度,可根据具体实验情况进行调整最适浓度。

2)参考建议:每条引物的浓度可在0.02 μM-0.5 μM范围内进行调整。

3)预混液中已经包含扩增所需要的酶、dNTP、盐离子等,无需额外添加。

二轮反应体系

组分

体积(μL

终浓度

2×Hieff® Multiplex PCR Master Mix for Pathogen(Cat.13581)

15

1×

Primer Index mix

4(~6 pmol)

 

一轮纯化产物

11

 

无菌超纯水

x

总体积

To 30

 

 

  1. 推荐反应程序:

循环步骤

温度(℃)

时间

循环数

预变性

95

3 min

1

变性

95

30 sec

X

退火

60℃

30 sec

延伸

72

30 sec

终延伸

72

3 min

 

暂存

4℃

1

【注】

  1. 退火时间可以根据Panel种类不同,进行适当延长,或者是梯度退火,比如64℃ 1 min,60℃ 1 min;
  2. 延伸时间以最长片段为准。延伸时间太长会导致非特异性扩增增多,可通过缩短延伸时间来提高扩增特异性,延伸时间不少于30 sec。 
  3. 针对模板含量较低的样本,可通过增加循环数提高扩增产出。
  4. Panel引物重数较多时可增加退火时间,调整梯度退火程序,或者根据已有Panel的合适的PCR反应程序进行测试。
  1. 循环数推荐:

单管引物重数

推荐循环数

10 ng gDNA )

退火延伸时间

一轮

二轮

10-50

10~28

18~28

30 s~2 min

50-200

10~28

16~28

30 s~2 min

200-800

10~28

14~28

30 s~2 min

800以上

10~28

12~28

30 s~4 min

【注】

上表是基于10 ng gDNA进行的一轮及二轮循环数的推荐;当投入量大于10 ng,二轮的相应的循环数可以减少;当投入量小于10 ng,一,二轮的相应的循环数要相应的增加

  1. 多重扩增引物纯化

一轮 PCR 产物 0.9×磁珠纯化

1) 准备工作:将 Hieff NGS® DNA Selection Beads 磁珠由冰箱中取出,室温平衡至少 30 min。 配制 80%乙醇。

2) 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3) 吸取 27 μL Hieff NGS® DNA Selection Beads(0.9×,Beads:DNA=0.9:1)至一轮 PCR 产物中,室温孵育 5 min。

4) 将 PCR 管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约 5 min),小心移除上清。

5) 保持 PCR 管始终置于磁力架中,加入 200 μL 新鲜配制的 80%乙醇漂洗磁珠,室温孵育 30 sec 后,小心移除上清。

6) 重复步骤 5,总计漂洗两次。

7) 保持 PCR 管始终置于磁力架中,开盖空气干燥磁珠至刚刚出现龟裂(不超过 5min)。

8) 直接加入 11 μL ddH2O,将 PCR 管从磁力架中取出,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置 5 min。进入下一步反应。

二轮 PCR 产物 0.9×磁珠纯化

1) 准备工作:将 Hieff NGS® DNA Selection Beads 磁珠由冰箱中取出,室温平衡至少 30 min。 配制 80%乙醇。

2) 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3) 吸取 27 μL Hieff NGS® DNA Selection Beads(0.9×,Beads:DNA=0.9:1)至一轮 PCR 产物中,室温孵育 5 min。

4) 将 PCR 管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约 5 min),小心移除上清。

5) 保持 PCR 管始终置于磁力架中,加入 200 μL 新鲜配制的 80%乙醇漂洗磁珠,室温孵育 30 sec 后,小心移除上清。

6) 重复步骤 5,总计漂洗两次。

7) 磁珠晾干后,将PCR管从磁力架上取下,加入30 μL Nuclease-free ddH2O覆盖磁珠,使用移液器吹打混匀。室温孵育2 min。如果磁珠干燥开裂,适当延长孵育时间。

8)将PCR管短暂离心收集后置于磁力架中,分离磁珠和液体直到溶液澄清(约5 min)。 小心吸取25 μL上清转移至新的EP管中,继续进行下一步反应。

 

HB230308

病原体多重PCR预混液(4×Multiplex PCR Master Mix)

暂无内容

病原体多重PCR预混液(4×Multiplex PCR Master Mix)

暂无内容

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

产品说明书

FAQ

COA

已发表文献

产品描述
 

Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅱ Reverse Transcriptase,RNase Inhibitor,dNTP,Random primers/Oligo dT Primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free H2O即可进行反应。Hifair® Ⅱ Reverse Transcriptase是在Hieff® M-MLV (RNase H) Reverse Transcriptase基础上通过基因工程技术得到新逆转录酶,与Hieff® M-MLV (RNase H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达50的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录

产品组分
 

编号

组分

产品编号/规格11120ES60 (100 T)

11120-A

RNase-free H2O

2×1 mL

11120-B

2×Hifair® Ⅱ SuperMix

1 mL

产品应用

适用于RT-qPCR实验。

运输和保存方法

冰袋运输。-20℃保存,有效期18个月。

第一链cDNA合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase free H2O

To 20 μL

25℃

5 min

2×Hifair® Ⅱ SuperMix

10 μL

42℃

30 min

Total RNA

1 ng -5 μg

85℃

5 min

or mRNA

1 ng-500 ng

   

【注】:

1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA

2. 逆转录温度:推荐使用42。对于GC含量模板或者复杂模板,可将逆转录温度提高到50℃。

逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复融。

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染;

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3)本产品仅作科研用途!

相关产品
 

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit 

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair®II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)

11123ES60

100 T

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141ES60

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11195ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11196ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11197ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11198ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11199ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11200ES08

5 mL

Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix

11184ES08

5 mL

 

HB210719

Q逆转录反应中的引物如何选择?

A根据实验目的不同,可按下列建议选择选择指南可见下表

a)对于全长第一链 cDNA 合成,且模板为真核生物来源,推荐选择Oligo (dT)引物。

b)当目标区域具有复杂二级结构或模板为原核生物来源,推荐选择 Random Primers 引物。

c)基因特异性引物(GSP)是与模板序列互补的引物,适用于目的序列已知的情况。

d)若逆转录后续为 qPCR 实验,可将 Oligo (dT)与Random Primers 混合使用。

逆转录引物选择指南

 

特征

优点

缺点

结合方式

Oligo (dT)

1)12-20 个T;

2)与真核生 mRNA 3 ’ Poly A 尾配对。

全长 cDNA。

1   polyA mRNA;

2  对模板 高。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Random Primers

1)6-9 个碱基;

2)可随机识别模板并结

杂结 微量模板。

特异性低, 小片段多。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

基因特异

GSP)

识别特定模板序列。

特异性强, 灵敏度高。

特定的序列。

 

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

A A 尾的 lncRNA 用预混液和 KIT  11123/11141/11121/11139) 都可以, circRNAmiRNA 和无 A 尾的 lncRNA   KIT11121/11139microRNA 需要特殊的茎环引物,需特别针对的逆转录试剂盒。

Q能否用来做 miRNA/circRNA/lncRNA 的逆转录?

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Q克隆逆转和定量逆转有什么区别?克隆逆转产物和定量逆转产物可以相互吗?

Aa)目的不同:克隆逆转后的 cDNA 后续用于基因克隆,后续实验以普通 PCR 为主; 定量逆转后的 cDNA 后续用于基因定量,后续实验以qPCR 为主。

b)逆转录过程不同:克隆逆转使用 Oligo dT,保证合成的长度。随机引物使用较少; 定量逆转使用 Oligo dT 或随机引物,或两者混合使用。

c)克隆逆转产物可用于 qPCR,但定量逆转产物不推荐用于普通 PCR,定量逆转试剂中含 Oligo (dT)与 Random Primers 混合引物,产物长度较短,可做短片段 PCR,过长的不适合。

Q逆转录试剂盒可以逆转真菌(或其他物种)RNA 吗?有没有专门针对真菌(或其他物种)的RNA 逆转录的试剂盒呢?

ARNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后, 逆转录试剂盒都可以用,没有特别针对的。

 

[1] Zhang J, Zhang G, Zhang W, et al. Loss of RBMS1 promotes anti-tumor immunity through enabling PD-L1 checkpoint blockade in triple-negative breast cancer [published online ahead of print, 2022 May 10]. Cell Death Differ. 2022;10.1038/s41418-022-01012-0. doi:10.1038/s41418-022-01012-0(IF:15.828)
[2] Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10(1):1973. Published 2019 Apr 29. doi:10.1038/s41467-019-09955-8(IF:11.878)
[3] Wang X, Ni J, You Y, et al. SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade. EMBO J. 2021;40(24):e108080. doi:10.15252/embj.2021108080(IF:11.598)
[4] Feng Y, Wang Y, Wang X, et al. Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription. Genome Biol. 2020;21(1):296. Published 2020 Dec 8. doi:10.1186/s13059-020-02201-1(IF:10.806)
[5] Tao X, Wan X, Wu D, Song E, Song Y. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage. J Hazard Mater. 2021;411:125134. doi:10.1016/j.jhazmat.2021.125134(IF:10.588)
[6] Alolga RN, Opoku-Damoah Y, Alagpulinsa DA, et al. Metabolomic and transcriptomic analyses of the anti-rheumatoid arthritis potential of xylopic acid in a bioinspired lipoprotein nanoformulation. Biomaterials. 2021;268:120482. doi:10.1016/j.biomaterials.2020.120482(IF:10.317)
[7] Mo X, Du S, Chen X, et al. Lactate Induces Production of the tRNAHis Half to Promote B-lymphoblastic Cell Proliferation. Mol Ther. 2020;28(11):2442-2457. doi:10.1016/j.ymthe.2020.09.010(IF:8.986)
[8] Hao W, Han J, Chu Y, et al. Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials. 2018;161:106-116. doi:10.1016/j.biomaterials.2018.01.034(IF:8.806)
[9] Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription. Theranostics. 2020;10(19):8834-8850. Published 2020 Jul 11. doi:10.7150/thno.45158(IF:8.579)
[10] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[11] Zhan T, Cui S, Shou H, et al. Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. Environ Pollut. 2021;286:117294. doi:10.1016/j.envpol.2021.117294(IF:8.071)
[12] Yu F, Zhu C, Ze S, et al. Design, Synthesis, and Bioevaluation of 2-Aminopteridin-7(8H)-one Derivatives as Novel Potent Adenosine A2A Receptor Antagonists for Cancer Immunotherapy. J Med Chem. 2022;65(5):4367-4386. doi:10.1021/acs.jmedchem.1c02199(IF:7.446)
[13] Zhu Y, Song D, Xu P, Sun J, Li L. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnol J. 2018;16(3):808-817. doi:10.1111/pbi.12830(IF:7.443)
[14] Liang R, Chen S, Jin Y, et al. The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr. 2022;10(3):e0230721. doi:10.1128/spectrum.02307-21(IF:7.171)
[15] Xiao C, Sun D, Liu B, et al. Nitrate transporter NRT1.1 and anion channel SLAH3 form a functional unit to regulate nitrate-dependent alleviation of ammonium toxicity. J Integr Plant Biol. 2022;64(4):942-957. doi:10.1111/jipb.13239(IF:7.061)
[16] Zhao Y, Ma T, Zou D. Identification of Unique Transcriptomic Signatures and Hub Genes Through RNA Sequencing and Integrated WGCNA and PPI Network Analysis in Nonerosive Reflux Disease. J Inflamm Res. 2021;14:6143-6156. Published 2021 Nov 23. doi:10.2147/JIR.S340452(IF:6.922)
[17] Zhu Y, Ren C, Jiang D, et al. RPL34-AS1-induced RPL34 inhibits cervical cancer cell tumorigenesis via the MDM2-P53 pathway. Cancer Sci. 2021;112(5):1811-1821. doi:10.1111/cas.14874(IF:6.716)
[18] Qiao K, Tian Y, Hu Z, Chai T. Wheat Cell Number Regulator CNR10 Enhances the Tolerance, Translocation, and Accumulation of Heavy Metals in Plants. Environ Sci Technol. 2019;53(2):860-867. doi:10.1021/acs.est.8b04021(IF:6.653)
[19] Xie ST, Chen AX, Song B, et al. Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. Brain Behav Immun. 2020;89:400-413. doi:10.1016/j.bbi.2020.07.027(IF:6.633)
[20] Zhang P, Lu S, Liu Z, et al. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr. 2021;8:790697. Published 2021 Dec 14. doi:10.3389/fnut.2021.790697(IF:6.576)
[21] Wang J, Hu R, Wang Z, et al. Establishment of Immortalized Yak Ruminal Epithelial Cell Lines by Lentivirus-Mediated SV40T and hTERT Gene Transduction. Oxid Med Cell Longev. 2022;2022:8128028. Published 2022 Mar 25. doi:10.1155/2022/8128028(IF:6.543)
[22] Lian B, Cai L, Zhang Z, et al. The anti-inflammatory effect of Pien Tze Huang in non-alcoholic fatty liver disease. Biomed Pharmacother. 2022;151:113076. doi:10.1016/j.biopha.2022.113076(IF:6.530)
[23] Ji L, Lin Z, Wan Z, et al. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis. 2020;11(4):250. Published 2020 Apr 20. doi:10.1038/s41419-020-2413-4(IF:6.304)
[24] Chen SP, Zhu GQ, Xing XX, et al. LncRNA USP2-AS1 Promotes Hepatocellular Carcinoma Growth by Enhancing YBX1-Mediated HIF1α Protein Translation Under Hypoxia. Front Oncol. 2022;12:882372. Published 2022 May 25. doi:10.3389/fonc.2022.882372(IF:6.244)
[25] Pan Y, Hu GY, Jiang S, et al. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol. 2021;11:637971. Published 2021 May 18. doi:10.3389/fonc.2021.637971(IF:6.244)
[26] Chen X, He H, Xiao Y, et al. CXCL10 Produced by HPV-Positive Cervical Cancer Cells Stimulates Exosomal PDL1 Expression by Fibroblasts via CXCR3 and JAK-STAT Pathways. Front Oncol. 2021;11:629350. Published 2021 Aug 6. doi:10.3389/fonc.2021.629350(IF:6.244)
[27] Xu L, Wang J, Liu B, et al. HDAC9 Contributes to Serous Ovarian Cancer Progression through Regulating Epithelial-Mesenchymal Transition. Biomedicines. 2022;10(2):374. Published 2022 Feb 3. doi:10.3390/biomedicines10020374(IF:6.081)
[28] Xue X, Shu M, Xiao Z, et al. Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci. 2022;65(4):757-769. doi:10.1007/s11427-020-1901-4(IF:6.038)
[29] Zhang KK, Liu JL, Chen LJ, et al. Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food Chem Toxicol. 2022;166:113208. doi:10.1016/j.fct.2022.113208(IF:6.025)
[30] Zhao J, Li R, Li Y, Chen J, Feng F, Sun C. Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production. Int J Mol Sci. 2021;22(9):4668. Published 2021 Apr 28. doi:10.3390/ijms22094668(IF:5.924)
[31] An L, Peng LY, Sun NY, et al. Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxid Redox Signal. 2019;30(15):1831-1848. doi:10.1089/ars.2018.7569(IF:5.828)
[32] Li D, He Q, Yang H, et al. Daily Dose of Bovine Lactoferrin Prevents Ethanol-Induced Liver Injury and Death in Male Mice by Regulating Hepatic Alcohol Metabolism and Modulating Gut Microbiota. Mol Nutr Food Res. 2021;65(18):e2100253. doi:10.1002/mnfr.202100253(IF:5.820)
[33] Chen LJ, He JT, Pan M, et al. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol. 2021;12:716703. Published 2021 Jul 26. doi:10.3389/fphar.2021.716703(IF:5.811)
[34] Liu P, Yang S, Wang Z, Dai H, Wang C. Feasibility and Mechanism Analysis of Shenfu Injection in the Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol. 2021;12:670146. Published 2021 Jul 28. doi:10.3389/fphar.2021.670146(IF:5.811)
[35] Wu F, Zhao Y, Shao Q, et al. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol. 2021;12:646331. Published 2021 May 13. doi:10.3389/fphar.2021.646331(IF:5.811)
[36] Qin Q, Yang B, Liu Z, Xu L, Song E, Song Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/β-catenin. Chemosphere. 2021;263:128125. doi:10.1016/j.chemosphere.2020.128125(IF:5.778)
[37] Cao L, Lu X, Wang G, et al. Maize ZmbZIP33 Is Involved in Drought Resistance and Recovery Ability Through an Abscisic Acid-Dependent Signaling Pathway. Front Plant Sci. 2021;12:629903. Published 2021 Apr 1. doi:10.3389/fpls.2021.629903(IF:5.754)
[38] Wei S, Zheng Q, Pan Y, Xu Y, Tang J, Cai X. Interplay between liver circadian rhythm and regeneration after PHx. Genomics. 2022;114(1):1-8. doi:10.1016/j.ygeno.2021.11.023(IF:5.736)
[39] Wang L, Liu XX, Yang YM, et al. RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression. Cancer Cell Int. 2021;21(1):590. Published 2021 Nov 4. doi:10.1186/s12935-021-02277-0(IF:5.722)
[40] Pan R, Lu Q, Ren C, et al. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging (Albany NY). 2021;13(13):17316-17327. doi:10.18632/aging.203212(IF:5.682)
[41] Cai D, Liu H, Wang J, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY). 2021;13(8):12160-12178. doi:10.18632/aging.202929(IF:5.682)
[42] Peng X, Zhang Y, Wan C, Gan Z, Chen C, Chen J. Antofine Triggers the Resistance Against Penicillium italicum in Ponkan Fruit by Driving AsA-GSH Cycle and ROS-Scavenging System. Front Microbiol. 2022;13:874430. Published 2022 Apr 12. doi:10.3389/fmicb.2022.874430(IF:5.640)
[43] Gong P, Kang J, Sadeghnezhad E, et al. Transcriptional Profiling of Resistant and Susceptible Cultivars of Grapevine (Vitis L.) Reveals Hypersensitive Responses to Plasmopara viticola. Front Microbiol. 2022;13:846504. Published 2022 Apr 25. doi:10.3389/fmicb.2022.846504(IF:5.640)
[44] Ma X, Chen J, Liu J, et al. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells toward CD133+ /CD44+ Colon cancer stem cells. J Cell Physiol. 2021;236(4):3114-3128. doi:10.1002/jcp.30080(IF:5.546)
[45] Cao J, Shao H, Hu J, et al. Identification of invasion-metastasis associated MiRNAs in gallbladder cancer by bioinformatics and experimental validation. J Transl Med. 2022;20(1):188. Published 2022 Apr 28. doi:10.1186/s12967-022-03394-8(IF:5.531)
[46] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[47] Wan Y, Yang S, Peng M, et al. Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. J Mater Chem B. 2020;8(26):5694-5706. doi:10.1039/d0tb01002b(IF:5.344)
[48] Wu F, Shao Q, Xia Q, et al. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. Phytomedicine. 2021;83:153487. doi:10.1016/j.phymed.2021.153487(IF:5.340)
[49] Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020;140:104814. doi:10.1016/j.nbd.2020.104814(IF:5.332)
[50] Cheng S, Wang D, Ke J, et al. Improved in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating. Colloids Surf B Biointerfaces. 2020;194:111176. doi:10.1016/j.colsurfb.2020.111176(IF:5.268)
[51] Wang L, Ouyang S, Li B, Wu H, Wang F. GSK-3β manipulates ferroptosis sensitivity by dominating iron homeostasis. Cell Death Discov. 2021;7(1):334. Published 2021 Nov 3. doi:10.1038/s41420-021-00726-3(IF:5.241)
[52] Zhang D, Tao L, Xu N, et al. CircRNA circTIAM1 promotes papillary thyroid cancer progression through the miR-646/HNRNPA1 signaling pathway. Cell Death Discov. 2022;8(1):21. Published 2022 Jan 12. doi:10.1038/s41420-021-00798-1(IF:5.241)
[53] Zhong J, Qiu X, Yu Q, Chen H, Yan C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol. 2020;163:464-475. doi:10.1016/j.ijbiomac.2020.06.266(IF:5.162)
[54] Yang Y, Wang J, Xu J, et al. Characterization of IL-22 Bioactivity and IL-22-Positive Cells in Grass Carp Ctenopharyngodon idella. Front Immunol. 2020;11:586889. Published 2020 Oct 6. doi:10.3389/fimmu.2020.586889(IF:5.085)
[55] He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation [published online ahead of print, 2021 May 25]. Life Sci. 2021;119651. doi:10.1016/j.lfs.2021.119651(IF:5.037)
[56] Chen J, Dong Z, Lei Y, et al. Vitamin C suppresses toxicological effects in MO/MФ and IgM+ B cells of Nile tilapia (Oreochromis niloticus) upon copper exposure. Aquat Toxicol. 2022;244:106100. doi:10.1016/j.aquatox.2022.106100(IF:4.964)
[57] Ma X, Xu J, Lu Q, et al. Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p. Int Immunopharmacol. 2022;107:108691. doi:10.1016/j.intimp.2022.108691(IF:4.932)
[58] Li S, Wang D, Wei P, et al. Elevated Natural Killer Cell-Mediated Cytotoxicity Is Associated with Cavity Formation in Pulmonary Tuberculosis Patients. J Immunol Res. 2021;2021:7925903. Published 2021 Oct 4. doi:10.1155/2021/7925903(IF:4.818)
[59] Tan XH, Zhang KK, Xu JT, et al. Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol. 2020;137:111179. doi:10.1016/j.fct.2020.111179(IF:4.679)
[60] Xu Y, Zhang G, Zou C, et al. Long non-coding RNA LINC01225 promotes proliferation, invasion and migration of gastric cancer via Wnt/β-catenin signalling pathway. J Cell Mol Med. 2019;23(11):7581-7591. doi:10.1111/jcmm.14627(IF:4.658)
[61] Shi YJ, Zhao QQ, Liu XS, et al. Toll-like receptor 4 regulates spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell Mol Med. 2020;24(1):385-397. doi:10.1111/jcmm.14742(IF:4.658)
[62] Zou Y, Xu X, Hu Q, Wang Y, Yang H, Zhang Z. Identification and diversity of fibrinogen-related protein (FREP) gene family in Haliotis discus hannai, H. rufescens, and H. laevigata and their responses to Vibrio parahemolyticus infection. Fish Shellfish Immunol. 2021;119:613-622. doi:10.1016/j.fsi.2021.10.041(IF:4.581)
[63] Cao L, Zhang P, Lu X, et al. Systematic Analysis of the Maize OSCA Genes Revealing ZmOSCA Family Members Involved in Osmotic Stress and ZmOSCA2.4 Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci. 2020;21(1):351. Published 2020 Jan 5. doi:10.3390/ijms21010351(IF:4.556)
[64] Ji Y, Yin W, Liang Y, Sun L, Yin Y, Zhang W. Anti-Inflammatory and Anti-Oxidative Activity of Indole-3-Acetic Acid Involves Induction of HO-1 and Neutralization of Free Radicals in RAW264.7 Cells. Int J Mol Sci. 2020;21(5):1579. Published 2020 Feb 25. doi:10.3390/ijms21051579(IF:4.556)
[65] Ren Z, Zhang Y, Cai T, et al. Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål). Microb Ecol. 2022;83(4):1049-1058. doi:10.1007/s00248-021-01820-w(IF:4.552)
[66] Wang C, Zheng D, Weng F, Jin Y, He L. Sodium butyrate ameliorates the cognitive impairment of Alzheimer's disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl). 2022;239(1):215-227. doi:10.1007/s00213-021-06025-0(IF:4.530)
[67] Xia S, Wang X, Yue P, Li Y, Zhang D. Establishment of induced pluripotent stem cell lines from a family of an ARVC patient receiving heart transplantation in infant age carrying compound heterozygous mutations in DSP gene. Stem Cell Res. 2020;48:101977. doi:10.1016/j.scr.2020.101977(IF:4.495)
[68] Pan J, Ren Q, Yang Z, et al. The effect of melatonin on the mouse ameloblast-lineage cell line ALCs. Sci Rep. 2022;12(1):8225. Published 2022 May 17. doi:10.1038/s41598-022-11912-3(IF:4.380)
[69] Xu Z, Zhou Y, Nong Q, et al. LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways. Cells. 2020;9(12):2599. Published 2020 Dec 4. doi:10.3390/cells9122599(IF:4.366)
[70] Xu Y, Cai Z, Ba L, et al. Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods. 2021;10(10):2434. Published 2021 Oct 13. doi:10.3390/foods10102434(IF:4.350)
[71] Liu Q, Wang X, Qin J, et al. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol. 2017;7:181. Published 2017 May 15. doi:10.3389/fcimb.2017.00181(IF:4.300)
[72] Chen X, Niu X, Liu Y, et al. Long-term correction of haemophilia B through CRISPR/Cas9 induced homology-independent targeted integration [published online ahead of print, 2022 Jun 9]. J Genet Genomics. 2022;S1673-8527(22)00159-X. doi:10.1016/j.jgg.2022.06.001(IF:4.275)
[73] Zheng T, Guan L, Yu K, et al. Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC Plant Biol. 2021;21(1):279. Published 2021 Jun 19. doi:10.1186/s12870-021-03073-8(IF:4.215)
[74] Kang J, Gong P, Ge M, et al. "The PLCP gene family of grapevine (Vitis vinifera L.): characterization and differential expression in response to Plasmopara Viticola" [published correction appears in BMC Plant Biol. 2021 Nov 20;21(1):548]. BMC Plant Biol. 2021;21(1):499. Published 2021 Oct 30. doi:10.1186/s12870-021-03279-w(IF:4.215)
[75] Ge M, Zhong R, Sadeghnezhad E, et al. Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC Plant Biol. 2022;22(1):217. Published 2022 Apr 28. doi:10.1186/s12870-022-03599-5(IF:4.215)
[76] Zheng T, Dong T, Haider MS, Jin H, Jia H, Fang J. Brassinosteroid Regulates 3-Hydroxy-3-methylglutaryl CoA Reductase to Promote Grape Fruit Development. J Agric Food Chem. 2020;68(43):11987-11996. doi:10.1021/acs.jafc.0c04466(IF:4.192)
[77] Cao L, Lu X, Zhang P, Wang G, Wei L, Wang T. Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses. Int J Mol Sci. 2019;20(17):4103. Published 2019 Aug 22. doi:10.3390/ijms20174103(IF:4.183)
[78] Zhao R , Ji Y , Chen X , et al. Effects of a β-type glycosidic polysaccharide from Flammulina velutipes on anti-inflammation and gut microbiota modulation in colitis mice. Food Funct. 2020;11(5):4259-4274. doi:10.1039/c9fo03017d(IF:4.171)
[79] Bai RB, Zhang YJ, Fan JM, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct. 2020;11(4):3306-3315. doi:10.1039/c9fo02969a(IF:4.171)
[80] Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des Devel Ther. 2021;15:3207-3221. Published 2021 Jul 21. doi:10.2147/DDDT.S319260(IF:4.162)
[81] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[82] Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother Res. 2021;35(3):1416-1431. doi:10.1002/ptr.6902(IF:4.087)
[83] Wang X, Hu H, Wu Z, et al. Tissue-specific transcriptome analyses reveal candidate genes for stilbene, flavonoid and anthraquinone biosynthesis in the medicinal plant Polygonum cuspidatum. BMC Genomics. 2021;22(1):353. Published 2021 May 17. doi:10.1186/s12864-021-07658-3(IF:3.969)
[84] Tu S, Wu J, Chen L, et al. LncRNA CALB2 sponges miR-30b-3p to promote odontoblast differentiation of human dental pulp stem cells via up-regulating RUNX2. Cell Signal. 2020;73:109695. doi:10.1016/j.cellsig.2020.109695(IF:3.968)
[85] Ren B, Cao J, He Y, Yang S, Zhang J. Assessment on effects of transplastomic potato plants expressing Colorado potato beetle β-Actin double-stranded RNAs for three non-target pests. Pestic Biochem Physiol. 2021;178:104909. doi:10.1016/j.pestbp.2021.104909(IF:3.963)
[86] Xu Y, Zhang G, Zou C, et al. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J Cell Physiol. 2019;234(7):11999-12010. doi:10.1002/jcp.27861(IF:3.923)
[87] Zhang G, Xu Y, Wang S, et al. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234(4):5163-5174. doi:10.1002/jcp.27320(IF:3.923)
[88] Chen L, Song H, Luo Z, et al. PHLPP2 is a novel biomarker and epigenetic target for the treatment of vitamin C in pancreatic cancer. Int J Oncol. 2020;56(5):1294-1303. doi:10.3892/ijo.2020.5001(IF:3.899)
[89] Lin C, Chen J, Hu M, Zheng W, Song Z, Qin H. Sesamol promotes browning of white adipocytes to ameliorate obesity by inducing mitochondrial biogenesis and inhibition mitophagy via β3-AR/PKA signaling pathway. Food Nutr Res. 2021;65:10.29219/fnr.v65.7577. Published 2021 May 10. doi:10.29219/fnr.v65.7577(IF:3.894)
[90] Hu Q, Qin Q, Xu S, et al. Pituitary Actions of EGF on Gonadotropins, Growth Hormone, Prolactin and Somatolactins in Grass Carp. Biology (Basel). 2020;9(9):279. Published 2020 Sep 8. doi:10.3390/biology9090279(IF:3.796)
[91] Dong Y, Yang Y, Wang Z, et al. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest Manag Sci. 2020;76(9):3168-3176. doi:10.1002/ps.5871(IF:3.750)
[92] Wang X, Wu Z, Bao W, et al. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Polygonum cuspidatum based on transcriptome data. BMC Plant Biol. 2019;19(1):498. Published 2019 Nov 14. doi:10.1186/s12870-019-2108-0(IF:3.670)
[93] Zhu Y, Du Q, Jiao N, et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sci. 2021;267:118881. doi:10.1016/j.lfs.2020.118881(IF:3.647)
[94] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[95] Cai Y, Liu Y, Sun Y, Ren Y. Mesenchyme homeobox 2 has a cancer-inhibiting function in breast carcinoma via affection of the PI3K/AKT/mTOR and ERK1/2 pathways. Biochem Biophys Res Commun. 2022;593:20-27. doi:10.1016/j.bbrc.2022.01.011(IF:3.575)
[96] Liu G, Liu Y, Niu B, et al. Genetic mutation of TRPV2 induces anxiety by decreasing GABA-B R2 expression in hippocampus. Biochem Biophys Res Commun. 2022;620:135-142. doi:10.1016/j.bbrc.2022.06.079(IF:3.575)
[97] Peng LY, An L, Sun NY, et al. Salvia miltiorrhiza Restrains Reactive Oxygen Species-Associated Pulmonary Fibrosis via Targeting Nrf2-Nox4 Redox Balance. Am J Chin Med. 2019;47(5):1113-1131. doi:10.1142/S0192415X19500575(IF:3.510)
[98] Chen J, Lei Y, Dong Z, et al. Toxicological damages on copper exposure to IgM+ B cells of Nile tilapia (Oreochromis niloticus) and mitigation of its adverse effects by β-glucan administration. Toxicol In Vitro. 2022;81:105334. doi:10.1016/j.tiv.2022.105334(IF:3.500)
[99] Wan X, He X, Liu Q, Wang X, Ding X, Li H. Frequent and mild scrotal heat stress in mice epigenetically alters glucose metabolism in the male offspring. Am J Physiol Endocrinol Metab. 2020;319(2):E291-E304. doi:10.1152/ajpendo.00038.2020(IF:3.469)
[100] Li H, Zhang P, Lin H, Gao H, Yin J. ETC-1002 Attenuates Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells via the AMPK/NF-κB Pathway and Exerts Ameliorative Effects in Experimental Periodontitis in Mice. Dis Markers. 2022;2022:8583674. Published 2022 Mar 16. doi:10.1155/2022/8583674(IF:3.434)
[101] Du Q, Zhang S, Li A, Mohammad IS, Liu B, Li Y. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice. Front Physiol. 2018;9:15. Published 2018 Jan 23. doi:10.3389/fphys.2018.00015(IF:3.394)
[102] Qi MM, He PZ, Zhang L, Dong WG. STAT3-mediated activation of mitochondrial pathway contributes to antitumor effect of dihydrotanshinone I in esophageal squamous cell carcinoma cells. World J Gastrointest Oncol. 2021;13(8):893-914. doi:10.4251/wjgo.v13.i8.893(IF:3.393)
[103] Liu Z, Lv X, Song E, Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol. 2020;407:115241. doi:10.1016/j.taap.2020.115241(IF:3.347)
[104] Cao L, Lu X, Wang G, et al. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics. 2021;296(6):1203-1219. doi:10.1007/s00438-021-01820-y(IF:3.291)
[105] Nie K, Cai M. SNAT2/SLC38A2 Confers the Stemness of Gastric Cancer Cells via Regulating Glutamine Level. Dig Dis Sci. 2022;67(7):2948-2956. doi:10.1007/s10620-021-07110-2(IF:3.199)
[106] Zhou E, Yan F, Li B, et al. Molecular and functional characterization of IL-6 receptor (IL-6R) and glycoprotein 130 (gp130) in Nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2020;106:103629. doi:10.1016/j.dci.2020.103629(IF:3.192)
[107] Wang J, Wang W, Xu J, et al. Structural insights into the co-evolution of IL-2 and its private receptor in fish. Dev Comp Immunol. 2021;115:103895. doi:10.1016/j.dci.2020.103895(IF:3.192)
[108] Duan C, Xu X, Lu X, Wang L, Lu Z. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 2022;22(1):137. Published 2022 Mar 26. doi:10.1186/s12876-022-02208-x(IF:3.067)
[109] Liu J, Liu Z, Li W, Zhang S. SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells. Oncol Lett. 2021;21(5):399. doi:10.3892/ol.2021.12660(IF:2.967)
[110] Liu Z, Wang Y, Qin W, et al. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol. 2019;33(11):e22395. doi:10.1002/jbt.22395(IF:2.965)
[111] Xu L, Xue T, Zhang J, Qu J. Knockdown of versican V1 induces a severe inflammatory response in LPS-induced acute lung injury via the TLR2-NF-κB signaling pathway in C57BL/6J mice. Mol Med Rep. 2016;13(6):5005-5012. doi:10.3892/mmr.2016.5168(IF:2.952)
[112] Mao K, Zhang X, Ali E, et al. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pestic Biochem Physiol. 2019;157:26-32. doi:10.1016/j.pestbp.2019.03.001(IF:2.870)
[113] Liao X, Xu PF, Gong PP, Wan H, Li JH. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect Sci. 2021;28(1):115-126. doi:10.1111/1744-7917.12764(IF:2.791)
[114] Cai T, Zhang Y, Liu Y, et al. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress. Insect Sci. 2021;28(2):355-362. doi:10.1111/1744-7917.12834(IF:2.791)
[115] Zhang J, Zhang B, Zhu F, Fu Y. Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pestic Biochem Physiol. 2021;172:104752. doi:10.1016/j.pestbp.2020.104752(IF:2.751)
[116] Lin K, Qu H, Tan Y, Deng T, Gao B, Wei N. Effects of the diphenylheptane extract of Alpinia officinarum rhizomes on ethanol-induced gastric ulcers in mice. Iran J Basic Med Sci. 2021;24(5):657-665. doi:10.22038/ijbms.2021.53644.12068(IF:2.699)
[117] Giri BR, Li H, Chen Y, Cheng G. Preliminary evaluation of neoblast-like stem cell factor and transcript expression profiles in Schistosoma japonicum. Acta Trop. 2018;187:57-64. doi:10.1016/j.actatropica.2018.07.022(IF:2.509)
[118] Xue Y, Fu W, Liu Y, et al. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Food Sci. 2020;85(11):4039-4049. doi:10.1111/1750-3841.15505(IF:2.479)
[119] Gao LP, Du MJ, Lv JJ, Schmull S, Huang RT, Li J. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch. Biomed Mater. 2017;12(6):065006. Published 2017 Oct 5. doi:10.1088/1748-605X/aa801b(IF:2.469)
[120] Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z. Long-Term Exposure to Low-Dose Lead Induced Deterioration in Bone Microstructure of Male Mice. Biol Trace Elem Res. 2020;195(2):491-498. doi:10.1007/s12011-019-01864-7(IF:2.431)
[121] Zhang X, Li X, Sheng Z, et al. Effects of Combined Exposure to Cadmium and High-Fat Diet on Bone Quality in Male Mice. Biol Trace Elem Res. 2020;193(2):434-444. doi:10.1007/s12011-019-01713-7(IF:2.431)
[122] Wang W, Shao A, Amombo E, Fan S, Xu X, Fu J. Transcriptome-wide identification of MAPKKK genes in bermudagrass (Cynodon dactylon L.) and their potential roles in low temperature stress responses. PeerJ. 2020;8:e10159. Published 2020 Oct 28. doi:10.7717/peerj.10159(IF:2.379)
[123] Ding Y, Liu G, Zeng F, Yan Y, Jing H, Jiang X. Adrenal gland responses surgical castration and immunocastration by different compensatory manners to increase DHEA secretion [published online ahead of print, 2021 Dec 14]. Anim Biotechnol. 2021;1-8. doi:10.1080/10495398.2021.2007116(IF:2.271)
[124] Zhang LL, Zhang XY, Lu YY, Bi YD, Liu XL, Fang F. The Role of Autophagy in Murine Cytomegalovirus Hepatitis. Viral Immunol. 2021;34(4):241-255. doi:10.1089/vim.2020.0024(IF:2.257)
[125] Li X, Chen T, Han Y, et al. Potential role of Methoprene-tolerant (Met) in methyl farnesoate-mediated vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol. 2021;252:110524. doi:10.1016/j.cbpb.2020.110524(IF:2.219)
[126] Chen T, Xu R, Sheng N, et al. Molecular evidence for farnesoic acid O-methyltransferase (FAMeT) involved in the biosynthesis of vitellogenin in the Chinese mitten crab Eriocheir sinensis. Anim Reprod Sci. 2021;234:106868. doi:10.1016/j.anireprosci.2021.106868(IF:2.145)
[127] Wu Y, Cui H, Zhang Y, et al. Inonotus obliquus extract alleviates myocardial ischemia/reperfusion injury by suppressing endoplasmic reticulum stress. Mol Med Rep. 2021;23(1):77. doi:10.3892/mmr.2020.11716(IF:2.100)
[128] Li X, Chen T, Jiang H, et al. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci. 2021;224:106653. doi:10.1016/j.anireprosci.2020.106653(IF:1.660)
[129] Liu X, Pi B, Pu J, Cheng C, Fang J, Yu B. Genome-wide analysis of chloride channel-encoding gene family members and identification of CLC genes that respond to Cl/salt stress in upland cotton. Mol Biol Rep. 2020;47(12):9361-9371. doi:10.1007/s11033-020-06023-z(IF:1.402)
[130] Li X, Lei Y, Yu Y, et al. Discovery and characterization of a novel splice variant of the p53 tumor suppressor gene in a human T cell leukemia cellline. Int J Clin Exp Pathol. 2020;13(5):1121-1135. Published 2020 May 1. (IF:0.252)
[131] Li X, Li M, Xu J, Zhang X, Xiao W, Zhang Z. Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice. J Toxicol. 2019;2019:8121834. Published 2019 Jun 20. doi:10.1155/2019/8121834(IF:0.000)

产品描述
 

Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅱ Reverse Transcriptase,RNase Inhibitor,dNTP,Random primers/Oligo dT Primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free H2O即可进行反应。Hifair® Ⅱ Reverse Transcriptase是在Hieff® M-MLV (RNase H) Reverse Transcriptase基础上通过基因工程技术得到新逆转录酶,与Hieff® M-MLV (RNase H) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达50的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录

产品组分
 

编号

组分

产品编号/规格11120ES60 (100 T)

11120-A

RNase-free H2O

2×1 mL

11120-B

2×Hifair® Ⅱ SuperMix

1 mL

产品应用

适用于RT-qPCR实验。

运输和保存方法

冰袋运输。-20℃保存,有效期18个月。

第一链cDNA合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase free H2O

To 20 μL

25℃

5 min

2×Hifair® Ⅱ SuperMix

10 μL

42℃

30 min

Total RNA

1 ng -5 μg

85℃

5 min

or mRNA

1 ng-500 ng

   

【注】:

1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA

2. 逆转录温度:推荐使用42。对于GC含量模板或者复杂模板,可将逆转录温度提高到50℃。

逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复融。

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染;

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3)本产品仅作科研用途!

相关产品
 

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit 

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair®II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)

11123ES60

100 T

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141ES60

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11195ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11196ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11197ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11198ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11199ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11200ES08

5 mL

Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix

11184ES08

5 mL

 

HB210719

Q逆转录反应中的引物如何选择?

A根据实验目的不同,可按下列建议选择选择指南可见下表

a)对于全长第一链 cDNA 合成,且模板为真核生物来源,推荐选择Oligo (dT)引物。

b)当目标区域具有复杂二级结构或模板为原核生物来源,推荐选择 Random Primers 引物。

c)基因特异性引物(GSP)是与模板序列互补的引物,适用于目的序列已知的情况。

d)若逆转录后续为 qPCR 实验,可将 Oligo (dT)与Random Primers 混合使用。

逆转录引物选择指南

 

特征

优点

缺点

结合方式

Oligo (dT)

1)12-20 个T;

2)与真核生 mRNA 3 ’ Poly A 尾配对。

全长 cDNA。

1   polyA mRNA;

2  对模板 高。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Random Primers

1)6-9 个碱基;

2)可随机识别模板并结

杂结 微量模板。

特异性低, 小片段多。

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

基因特异

GSP)

识别特定模板序列。

特异性强, 灵敏度高。

特定的序列。

 

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

A A 尾的 lncRNA 用预混液和 KIT  11123/11141/11121/11139) 都可以, circRNAmiRNA 和无 A 尾的 lncRNA   KIT11121/11139microRNA 需要特殊的茎环引物,需特别针对的逆转录试剂盒。

Q能否用来做 miRNA/circRNA/lncRNA 的逆转录?

第一链cDNA合成即用型预混液|Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix

Q克隆逆转和定量逆转有什么区别?克隆逆转产物和定量逆转产物可以相互吗?

Aa)目的不同:克隆逆转后的 cDNA 后续用于基因克隆,后续实验以普通 PCR 为主; 定量逆转后的 cDNA 后续用于基因定量,后续实验以qPCR 为主。

b)逆转录过程不同:克隆逆转使用 Oligo dT,保证合成的长度。随机引物使用较少; 定量逆转使用 Oligo dT 或随机引物,或两者混合使用。

c)克隆逆转产物可用于 qPCR,但定量逆转产物不推荐用于普通 PCR,定量逆转试剂中含 Oligo (dT)与 Random Primers 混合引物,产物长度较短,可做短片段 PCR,过长的不适合。

Q逆转录试剂盒可以逆转真菌(或其他物种)RNA 吗?有没有专门针对真菌(或其他物种)的RNA 逆转录的试剂盒呢?

ARNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后, 逆转录试剂盒都可以用,没有特别针对的。

 

[1] Zhang J, Zhang G, Zhang W, et al. Loss of RBMS1 promotes anti-tumor immunity through enabling PD-L1 checkpoint blockade in triple-negative breast cancer [published online ahead of print, 2022 May 10]. Cell Death Differ. 2022;10.1038/s41418-022-01012-0. doi:10.1038/s41418-022-01012-0(IF:15.828)
[2] Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10(1):1973. Published 2019 Apr 29. doi:10.1038/s41467-019-09955-8(IF:11.878)
[3] Wang X, Ni J, You Y, et al. SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade. EMBO J. 2021;40(24):e108080. doi:10.15252/embj.2021108080(IF:11.598)
[4] Feng Y, Wang Y, Wang X, et al. Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription. Genome Biol. 2020;21(1):296. Published 2020 Dec 8. doi:10.1186/s13059-020-02201-1(IF:10.806)
[5] Tao X, Wan X, Wu D, Song E, Song Y. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage. J Hazard Mater. 2021;411:125134. doi:10.1016/j.jhazmat.2021.125134(IF:10.588)
[6] Alolga RN, Opoku-Damoah Y, Alagpulinsa DA, et al. Metabolomic and transcriptomic analyses of the anti-rheumatoid arthritis potential of xylopic acid in a bioinspired lipoprotein nanoformulation. Biomaterials. 2021;268:120482. doi:10.1016/j.biomaterials.2020.120482(IF:10.317)
[7] Mo X, Du S, Chen X, et al. Lactate Induces Production of the tRNAHis Half to Promote B-lymphoblastic Cell Proliferation. Mol Ther. 2020;28(11):2442-2457. doi:10.1016/j.ymthe.2020.09.010(IF:8.986)
[8] Hao W, Han J, Chu Y, et al. Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials. 2018;161:106-116. doi:10.1016/j.biomaterials.2018.01.034(IF:8.806)
[9] Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription. Theranostics. 2020;10(19):8834-8850. Published 2020 Jul 11. doi:10.7150/thno.45158(IF:8.579)
[10] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[11] Zhan T, Cui S, Shou H, et al. Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. Environ Pollut. 2021;286:117294. doi:10.1016/j.envpol.2021.117294(IF:8.071)
[12] Yu F, Zhu C, Ze S, et al. Design, Synthesis, and Bioevaluation of 2-Aminopteridin-7(8H)-one Derivatives as Novel Potent Adenosine A2A Receptor Antagonists for Cancer Immunotherapy. J Med Chem. 2022;65(5):4367-4386. doi:10.1021/acs.jmedchem.1c02199(IF:7.446)
[13] Zhu Y, Song D, Xu P, Sun J, Li L. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnol J. 2018;16(3):808-817. doi:10.1111/pbi.12830(IF:7.443)
[14] Liang R, Chen S, Jin Y, et al. The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr. 2022;10(3):e0230721. doi:10.1128/spectrum.02307-21(IF:7.171)
[15] Xiao C, Sun D, Liu B, et al. Nitrate transporter NRT1.1 and anion channel SLAH3 form a functional unit to regulate nitrate-dependent alleviation of ammonium toxicity. J Integr Plant Biol. 2022;64(4):942-957. doi:10.1111/jipb.13239(IF:7.061)
[16] Zhao Y, Ma T, Zou D. Identification of Unique Transcriptomic Signatures and Hub Genes Through RNA Sequencing and Integrated WGCNA and PPI Network Analysis in Nonerosive Reflux Disease. J Inflamm Res. 2021;14:6143-6156. Published 2021 Nov 23. doi:10.2147/JIR.S340452(IF:6.922)
[17] Zhu Y, Ren C, Jiang D, et al. RPL34-AS1-induced RPL34 inhibits cervical cancer cell tumorigenesis via the MDM2-P53 pathway. Cancer Sci. 2021;112(5):1811-1821. doi:10.1111/cas.14874(IF:6.716)
[18] Qiao K, Tian Y, Hu Z, Chai T. Wheat Cell Number Regulator CNR10 Enhances the Tolerance, Translocation, and Accumulation of Heavy Metals in Plants. Environ Sci Technol. 2019;53(2):860-867. doi:10.1021/acs.est.8b04021(IF:6.653)
[19] Xie ST, Chen AX, Song B, et al. Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. Brain Behav Immun. 2020;89:400-413. doi:10.1016/j.bbi.2020.07.027(IF:6.633)
[20] Zhang P, Lu S, Liu Z, et al. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr. 2021;8:790697. Published 2021 Dec 14. doi:10.3389/fnut.2021.790697(IF:6.576)
[21] Wang J, Hu R, Wang Z, et al. Establishment of Immortalized Yak Ruminal Epithelial Cell Lines by Lentivirus-Mediated SV40T and hTERT Gene Transduction. Oxid Med Cell Longev. 2022;2022:8128028. Published 2022 Mar 25. doi:10.1155/2022/8128028(IF:6.543)
[22] Lian B, Cai L, Zhang Z, et al. The anti-inflammatory effect of Pien Tze Huang in non-alcoholic fatty liver disease. Biomed Pharmacother. 2022;151:113076. doi:10.1016/j.biopha.2022.113076(IF:6.530)
[23] Ji L, Lin Z, Wan Z, et al. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis. 2020;11(4):250. Published 2020 Apr 20. doi:10.1038/s41419-020-2413-4(IF:6.304)
[24] Chen SP, Zhu GQ, Xing XX, et al. LncRNA USP2-AS1 Promotes Hepatocellular Carcinoma Growth by Enhancing YBX1-Mediated HIF1α Protein Translation Under Hypoxia. Front Oncol. 2022;12:882372. Published 2022 May 25. doi:10.3389/fonc.2022.882372(IF:6.244)
[25] Pan Y, Hu GY, Jiang S, et al. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol. 2021;11:637971. Published 2021 May 18. doi:10.3389/fonc.2021.637971(IF:6.244)
[26] Chen X, He H, Xiao Y, et al. CXCL10 Produced by HPV-Positive Cervical Cancer Cells Stimulates Exosomal PDL1 Expression by Fibroblasts via CXCR3 and JAK-STAT Pathways. Front Oncol. 2021;11:629350. Published 2021 Aug 6. doi:10.3389/fonc.2021.629350(IF:6.244)
[27] Xu L, Wang J, Liu B, et al. HDAC9 Contributes to Serous Ovarian Cancer Progression through Regulating Epithelial-Mesenchymal Transition. Biomedicines. 2022;10(2):374. Published 2022 Feb 3. doi:10.3390/biomedicines10020374(IF:6.081)
[28] Xue X, Shu M, Xiao Z, et al. Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci. 2022;65(4):757-769. doi:10.1007/s11427-020-1901-4(IF:6.038)
[29] Zhang KK, Liu JL, Chen LJ, et al. Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food Chem Toxicol. 2022;166:113208. doi:10.1016/j.fct.2022.113208(IF:6.025)
[30] Zhao J, Li R, Li Y, Chen J, Feng F, Sun C. Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production. Int J Mol Sci. 2021;22(9):4668. Published 2021 Apr 28. doi:10.3390/ijms22094668(IF:5.924)
[31] An L, Peng LY, Sun NY, et al. Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxid Redox Signal. 2019;30(15):1831-1848. doi:10.1089/ars.2018.7569(IF:5.828)
[32] Li D, He Q, Yang H, et al. Daily Dose of Bovine Lactoferrin Prevents Ethanol-Induced Liver Injury and Death in Male Mice by Regulating Hepatic Alcohol Metabolism and Modulating Gut Microbiota. Mol Nutr Food Res. 2021;65(18):e2100253. doi:10.1002/mnfr.202100253(IF:5.820)
[33] Chen LJ, He JT, Pan M, et al. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol. 2021;12:716703. Published 2021 Jul 26. doi:10.3389/fphar.2021.716703(IF:5.811)
[34] Liu P, Yang S, Wang Z, Dai H, Wang C. Feasibility and Mechanism Analysis of Shenfu Injection in the Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol. 2021;12:670146. Published 2021 Jul 28. doi:10.3389/fphar.2021.670146(IF:5.811)
[35] Wu F, Zhao Y, Shao Q, et al. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol. 2021;12:646331. Published 2021 May 13. doi:10.3389/fphar.2021.646331(IF:5.811)
[36] Qin Q, Yang B, Liu Z, Xu L, Song E, Song Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/β-catenin. Chemosphere. 2021;263:128125. doi:10.1016/j.chemosphere.2020.128125(IF:5.778)
[37] Cao L, Lu X, Wang G, et al. Maize ZmbZIP33 Is Involved in Drought Resistance and Recovery Ability Through an Abscisic Acid-Dependent Signaling Pathway. Front Plant Sci. 2021;12:629903. Published 2021 Apr 1. doi:10.3389/fpls.2021.629903(IF:5.754)
[38] Wei S, Zheng Q, Pan Y, Xu Y, Tang J, Cai X. Interplay between liver circadian rhythm and regeneration after PHx. Genomics. 2022;114(1):1-8. doi:10.1016/j.ygeno.2021.11.023(IF:5.736)
[39] Wang L, Liu XX, Yang YM, et al. RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression. Cancer Cell Int. 2021;21(1):590. Published 2021 Nov 4. doi:10.1186/s12935-021-02277-0(IF:5.722)
[40] Pan R, Lu Q, Ren C, et al. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging (Albany NY). 2021;13(13):17316-17327. doi:10.18632/aging.203212(IF:5.682)
[41] Cai D, Liu H, Wang J, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY). 2021;13(8):12160-12178. doi:10.18632/aging.202929(IF:5.682)
[42] Peng X, Zhang Y, Wan C, Gan Z, Chen C, Chen J. Antofine Triggers the Resistance Against Penicillium italicum in Ponkan Fruit by Driving AsA-GSH Cycle and ROS-Scavenging System. Front Microbiol. 2022;13:874430. Published 2022 Apr 12. doi:10.3389/fmicb.2022.874430(IF:5.640)
[43] Gong P, Kang J, Sadeghnezhad E, et al. Transcriptional Profiling of Resistant and Susceptible Cultivars of Grapevine (Vitis L.) Reveals Hypersensitive Responses to Plasmopara viticola. Front Microbiol. 2022;13:846504. Published 2022 Apr 25. doi:10.3389/fmicb.2022.846504(IF:5.640)
[44] Ma X, Chen J, Liu J, et al. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells toward CD133+ /CD44+ Colon cancer stem cells. J Cell Physiol. 2021;236(4):3114-3128. doi:10.1002/jcp.30080(IF:5.546)
[45] Cao J, Shao H, Hu J, et al. Identification of invasion-metastasis associated MiRNAs in gallbladder cancer by bioinformatics and experimental validation. J Transl Med. 2022;20(1):188. Published 2022 Apr 28. doi:10.1186/s12967-022-03394-8(IF:5.531)
[46] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[47] Wan Y, Yang S, Peng M, et al. Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. J Mater Chem B. 2020;8(26):5694-5706. doi:10.1039/d0tb01002b(IF:5.344)
[48] Wu F, Shao Q, Xia Q, et al. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. Phytomedicine. 2021;83:153487. doi:10.1016/j.phymed.2021.153487(IF:5.340)
[49] Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020;140:104814. doi:10.1016/j.nbd.2020.104814(IF:5.332)
[50] Cheng S, Wang D, Ke J, et al. Improved in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating. Colloids Surf B Biointerfaces. 2020;194:111176. doi:10.1016/j.colsurfb.2020.111176(IF:5.268)
[51] Wang L, Ouyang S, Li B, Wu H, Wang F. GSK-3β manipulates ferroptosis sensitivity by dominating iron homeostasis. Cell Death Discov. 2021;7(1):334. Published 2021 Nov 3. doi:10.1038/s41420-021-00726-3(IF:5.241)
[52] Zhang D, Tao L, Xu N, et al. CircRNA circTIAM1 promotes papillary thyroid cancer progression through the miR-646/HNRNPA1 signaling pathway. Cell Death Discov. 2022;8(1):21. Published 2022 Jan 12. doi:10.1038/s41420-021-00798-1(IF:5.241)
[53] Zhong J, Qiu X, Yu Q, Chen H, Yan C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol. 2020;163:464-475. doi:10.1016/j.ijbiomac.2020.06.266(IF:5.162)
[54] Yang Y, Wang J, Xu J, et al. Characterization of IL-22 Bioactivity and IL-22-Positive Cells in Grass Carp Ctenopharyngodon idella. Front Immunol. 2020;11:586889. Published 2020 Oct 6. doi:10.3389/fimmu.2020.586889(IF:5.085)
[55] He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation [published online ahead of print, 2021 May 25]. Life Sci. 2021;119651. doi:10.1016/j.lfs.2021.119651(IF:5.037)
[56] Chen J, Dong Z, Lei Y, et al. Vitamin C suppresses toxicological effects in MO/MФ and IgM+ B cells of Nile tilapia (Oreochromis niloticus) upon copper exposure. Aquat Toxicol. 2022;244:106100. doi:10.1016/j.aquatox.2022.106100(IF:4.964)
[57] Ma X, Xu J, Lu Q, et al. Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p. Int Immunopharmacol. 2022;107:108691. doi:10.1016/j.intimp.2022.108691(IF:4.932)
[58] Li S, Wang D, Wei P, et al. Elevated Natural Killer Cell-Mediated Cytotoxicity Is Associated with Cavity Formation in Pulmonary Tuberculosis Patients. J Immunol Res. 2021;2021:7925903. Published 2021 Oct 4. doi:10.1155/2021/7925903(IF:4.818)
[59] Tan XH, Zhang KK, Xu JT, et al. Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol. 2020;137:111179. doi:10.1016/j.fct.2020.111179(IF:4.679)
[60] Xu Y, Zhang G, Zou C, et al. Long non-coding RNA LINC01225 promotes proliferation, invasion and migration of gastric cancer via Wnt/β-catenin signalling pathway. J Cell Mol Med. 2019;23(11):7581-7591. doi:10.1111/jcmm.14627(IF:4.658)
[61] Shi YJ, Zhao QQ, Liu XS, et al. Toll-like receptor 4 regulates spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell Mol Med. 2020;24(1):385-397. doi:10.1111/jcmm.14742(IF:4.658)
[62] Zou Y, Xu X, Hu Q, Wang Y, Yang H, Zhang Z. Identification and diversity of fibrinogen-related protein (FREP) gene family in Haliotis discus hannai, H. rufescens, and H. laevigata and their responses to Vibrio parahemolyticus infection. Fish Shellfish Immunol. 2021;119:613-622. doi:10.1016/j.fsi.2021.10.041(IF:4.581)
[63] Cao L, Zhang P, Lu X, et al. Systematic Analysis of the Maize OSCA Genes Revealing ZmOSCA Family Members Involved in Osmotic Stress and ZmOSCA2.4 Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci. 2020;21(1):351. Published 2020 Jan 5. doi:10.3390/ijms21010351(IF:4.556)
[64] Ji Y, Yin W, Liang Y, Sun L, Yin Y, Zhang W. Anti-Inflammatory and Anti-Oxidative Activity of Indole-3-Acetic Acid Involves Induction of HO-1 and Neutralization of Free Radicals in RAW264.7 Cells. Int J Mol Sci. 2020;21(5):1579. Published 2020 Feb 25. doi:10.3390/ijms21051579(IF:4.556)
[65] Ren Z, Zhang Y, Cai T, et al. Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål). Microb Ecol. 2022;83(4):1049-1058. doi:10.1007/s00248-021-01820-w(IF:4.552)
[66] Wang C, Zheng D, Weng F, Jin Y, He L. Sodium butyrate ameliorates the cognitive impairment of Alzheimer's disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl). 2022;239(1):215-227. doi:10.1007/s00213-021-06025-0(IF:4.530)
[67] Xia S, Wang X, Yue P, Li Y, Zhang D. Establishment of induced pluripotent stem cell lines from a family of an ARVC patient receiving heart transplantation in infant age carrying compound heterozygous mutations in DSP gene. Stem Cell Res. 2020;48:101977. doi:10.1016/j.scr.2020.101977(IF:4.495)
[68] Pan J, Ren Q, Yang Z, et al. The effect of melatonin on the mouse ameloblast-lineage cell line ALCs. Sci Rep. 2022;12(1):8225. Published 2022 May 17. doi:10.1038/s41598-022-11912-3(IF:4.380)
[69] Xu Z, Zhou Y, Nong Q, et al. LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways. Cells. 2020;9(12):2599. Published 2020 Dec 4. doi:10.3390/cells9122599(IF:4.366)
[70] Xu Y, Cai Z, Ba L, et al. Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods. 2021;10(10):2434. Published 2021 Oct 13. doi:10.3390/foods10102434(IF:4.350)
[71] Liu Q, Wang X, Qin J, et al. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol. 2017;7:181. Published 2017 May 15. doi:10.3389/fcimb.2017.00181(IF:4.300)
[72] Chen X, Niu X, Liu Y, et al. Long-term correction of haemophilia B through CRISPR/Cas9 induced homology-independent targeted integration [published online ahead of print, 2022 Jun 9]. J Genet Genomics. 2022;S1673-8527(22)00159-X. doi:10.1016/j.jgg.2022.06.001(IF:4.275)
[73] Zheng T, Guan L, Yu K, et al. Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC Plant Biol. 2021;21(1):279. Published 2021 Jun 19. doi:10.1186/s12870-021-03073-8(IF:4.215)
[74] Kang J, Gong P, Ge M, et al. "The PLCP gene family of grapevine (Vitis vinifera L.): characterization and differential expression in response to Plasmopara Viticola" [published correction appears in BMC Plant Biol. 2021 Nov 20;21(1):548]. BMC Plant Biol. 2021;21(1):499. Published 2021 Oct 30. doi:10.1186/s12870-021-03279-w(IF:4.215)
[75] Ge M, Zhong R, Sadeghnezhad E, et al. Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC Plant Biol. 2022;22(1):217. Published 2022 Apr 28. doi:10.1186/s12870-022-03599-5(IF:4.215)
[76] Zheng T, Dong T, Haider MS, Jin H, Jia H, Fang J. Brassinosteroid Regulates 3-Hydroxy-3-methylglutaryl CoA Reductase to Promote Grape Fruit Development. J Agric Food Chem. 2020;68(43):11987-11996. doi:10.1021/acs.jafc.0c04466(IF:4.192)
[77] Cao L, Lu X, Zhang P, Wang G, Wei L, Wang T. Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses. Int J Mol Sci. 2019;20(17):4103. Published 2019 Aug 22. doi:10.3390/ijms20174103(IF:4.183)
[78] Zhao R , Ji Y , Chen X , et al. Effects of a β-type glycosidic polysaccharide from Flammulina velutipes on anti-inflammation and gut microbiota modulation in colitis mice. Food Funct. 2020;11(5):4259-4274. doi:10.1039/c9fo03017d(IF:4.171)
[79] Bai RB, Zhang YJ, Fan JM, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct. 2020;11(4):3306-3315. doi:10.1039/c9fo02969a(IF:4.171)
[80] Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des Devel Ther. 2021;15:3207-3221. Published 2021 Jul 21. doi:10.2147/DDDT.S319260(IF:4.162)
[81] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[82] Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother Res. 2021;35(3):1416-1431. doi:10.1002/ptr.6902(IF:4.087)
[83] Wang X, Hu H, Wu Z, et al. Tissue-specific transcriptome analyses reveal candidate genes for stilbene, flavonoid and anthraquinone biosynthesis in the medicinal plant Polygonum cuspidatum. BMC Genomics. 2021;22(1):353. Published 2021 May 17. doi:10.1186/s12864-021-07658-3(IF:3.969)
[84] Tu S, Wu J, Chen L, et al. LncRNA CALB2 sponges miR-30b-3p to promote odontoblast differentiation of human dental pulp stem cells via up-regulating RUNX2. Cell Signal. 2020;73:109695. doi:10.1016/j.cellsig.2020.109695(IF:3.968)
[85] Ren B, Cao J, He Y, Yang S, Zhang J. Assessment on effects of transplastomic potato plants expressing Colorado potato beetle β-Actin double-stranded RNAs for three non-target pests. Pestic Biochem Physiol. 2021;178:104909. doi:10.1016/j.pestbp.2021.104909(IF:3.963)
[86] Xu Y, Zhang G, Zou C, et al. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J Cell Physiol. 2019;234(7):11999-12010. doi:10.1002/jcp.27861(IF:3.923)
[87] Zhang G, Xu Y, Wang S, et al. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234(4):5163-5174. doi:10.1002/jcp.27320(IF:3.923)
[88] Chen L, Song H, Luo Z, et al. PHLPP2 is a novel biomarker and epigenetic target for the treatment of vitamin C in pancreatic cancer. Int J Oncol. 2020;56(5):1294-1303. doi:10.3892/ijo.2020.5001(IF:3.899)
[89] Lin C, Chen J, Hu M, Zheng W, Song Z, Qin H. Sesamol promotes browning of white adipocytes to ameliorate obesity by inducing mitochondrial biogenesis and inhibition mitophagy via β3-AR/PKA signaling pathway. Food Nutr Res. 2021;65:10.29219/fnr.v65.7577. Published 2021 May 10. doi:10.29219/fnr.v65.7577(IF:3.894)
[90] Hu Q, Qin Q, Xu S, et al. Pituitary Actions of EGF on Gonadotropins, Growth Hormone, Prolactin and Somatolactins in Grass Carp. Biology (Basel). 2020;9(9):279. Published 2020 Sep 8. doi:10.3390/biology9090279(IF:3.796)
[91] Dong Y, Yang Y, Wang Z, et al. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest Manag Sci. 2020;76(9):3168-3176. doi:10.1002/ps.5871(IF:3.750)
[92] Wang X, Wu Z, Bao W, et al. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Polygonum cuspidatum based on transcriptome data. BMC Plant Biol. 2019;19(1):498. Published 2019 Nov 14. doi:10.1186/s12870-019-2108-0(IF:3.670)
[93] Zhu Y, Du Q, Jiao N, et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sci. 2021;267:118881. doi:10.1016/j.lfs.2020.118881(IF:3.647)
[94] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[95] Cai Y, Liu Y, Sun Y, Ren Y. Mesenchyme homeobox 2 has a cancer-inhibiting function in breast carcinoma via affection of the PI3K/AKT/mTOR and ERK1/2 pathways. Biochem Biophys Res Commun. 2022;593:20-27. doi:10.1016/j.bbrc.2022.01.011(IF:3.575)
[96] Liu G, Liu Y, Niu B, et al. Genetic mutation of TRPV2 induces anxiety by decreasing GABA-B R2 expression in hippocampus. Biochem Biophys Res Commun. 2022;620:135-142. doi:10.1016/j.bbrc.2022.06.079(IF:3.575)
[97] Peng LY, An L, Sun NY, et al. Salvia miltiorrhiza Restrains Reactive Oxygen Species-Associated Pulmonary Fibrosis via Targeting Nrf2-Nox4 Redox Balance. Am J Chin Med. 2019;47(5):1113-1131. doi:10.1142/S0192415X19500575(IF:3.510)
[98] Chen J, Lei Y, Dong Z, et al. Toxicological damages on copper exposure to IgM+ B cells of Nile tilapia (Oreochromis niloticus) and mitigation of its adverse effects by β-glucan administration. Toxicol In Vitro. 2022;81:105334. doi:10.1016/j.tiv.2022.105334(IF:3.500)
[99] Wan X, He X, Liu Q, Wang X, Ding X, Li H. Frequent and mild scrotal heat stress in mice epigenetically alters glucose metabolism in the male offspring. Am J Physiol Endocrinol Metab. 2020;319(2):E291-E304. doi:10.1152/ajpendo.00038.2020(IF:3.469)
[100] Li H, Zhang P, Lin H, Gao H, Yin J. ETC-1002 Attenuates Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells via the AMPK/NF-κB Pathway and Exerts Ameliorative Effects in Experimental Periodontitis in Mice. Dis Markers. 2022;2022:8583674. Published 2022 Mar 16. doi:10.1155/2022/8583674(IF:3.434)
[101] Du Q, Zhang S, Li A, Mohammad IS, Liu B, Li Y. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice. Front Physiol. 2018;9:15. Published 2018 Jan 23. doi:10.3389/fphys.2018.00015(IF:3.394)
[102] Qi MM, He PZ, Zhang L, Dong WG. STAT3-mediated activation of mitochondrial pathway contributes to antitumor effect of dihydrotanshinone I in esophageal squamous cell carcinoma cells. World J Gastrointest Oncol. 2021;13(8):893-914. doi:10.4251/wjgo.v13.i8.893(IF:3.393)
[103] Liu Z, Lv X, Song E, Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol. 2020;407:115241. doi:10.1016/j.taap.2020.115241(IF:3.347)
[104] Cao L, Lu X, Wang G, et al. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics. 2021;296(6):1203-1219. doi:10.1007/s00438-021-01820-y(IF:3.291)
[105] Nie K, Cai M. SNAT2/SLC38A2 Confers the Stemness of Gastric Cancer Cells via Regulating Glutamine Level. Dig Dis Sci. 2022;67(7):2948-2956. doi:10.1007/s10620-021-07110-2(IF:3.199)
[106] Zhou E, Yan F, Li B, et al. Molecular and functional characterization of IL-6 receptor (IL-6R) and glycoprotein 130 (gp130) in Nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2020;106:103629. doi:10.1016/j.dci.2020.103629(IF:3.192)
[107] Wang J, Wang W, Xu J, et al. Structural insights into the co-evolution of IL-2 and its private receptor in fish. Dev Comp Immunol. 2021;115:103895. doi:10.1016/j.dci.2020.103895(IF:3.192)
[108] Duan C, Xu X, Lu X, Wang L, Lu Z. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 2022;22(1):137. Published 2022 Mar 26. doi:10.1186/s12876-022-02208-x(IF:3.067)
[109] Liu J, Liu Z, Li W, Zhang S. SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells. Oncol Lett. 2021;21(5):399. doi:10.3892/ol.2021.12660(IF:2.967)
[110] Liu Z, Wang Y, Qin W, et al. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol. 2019;33(11):e22395. doi:10.1002/jbt.22395(IF:2.965)
[111] Xu L, Xue T, Zhang J, Qu J. Knockdown of versican V1 induces a severe inflammatory response in LPS-induced acute lung injury via the TLR2-NF-κB signaling pathway in C57BL/6J mice. Mol Med Rep. 2016;13(6):5005-5012. doi:10.3892/mmr.2016.5168(IF:2.952)
[112] Mao K, Zhang X, Ali E, et al. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pestic Biochem Physiol. 2019;157:26-32. doi:10.1016/j.pestbp.2019.03.001(IF:2.870)
[113] Liao X, Xu PF, Gong PP, Wan H, Li JH. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect Sci. 2021;28(1):115-126. doi:10.1111/1744-7917.12764(IF:2.791)
[114] Cai T, Zhang Y, Liu Y, et al. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress. Insect Sci. 2021;28(2):355-362. doi:10.1111/1744-7917.12834(IF:2.791)
[115] Zhang J, Zhang B, Zhu F, Fu Y. Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pestic Biochem Physiol. 2021;172:104752. doi:10.1016/j.pestbp.2020.104752(IF:2.751)
[116] Lin K, Qu H, Tan Y, Deng T, Gao B, Wei N. Effects of the diphenylheptane extract of Alpinia officinarum rhizomes on ethanol-induced gastric ulcers in mice. Iran J Basic Med Sci. 2021;24(5):657-665. doi:10.22038/ijbms.2021.53644.12068(IF:2.699)
[117] Giri BR, Li H, Chen Y, Cheng G. Preliminary evaluation of neoblast-like stem cell factor and transcript expression profiles in Schistosoma japonicum. Acta Trop. 2018;187:57-64. doi:10.1016/j.actatropica.2018.07.022(IF:2.509)
[118] Xue Y, Fu W, Liu Y, et al. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Food Sci. 2020;85(11):4039-4049. doi:10.1111/1750-3841.15505(IF:2.479)
[119] Gao LP, Du MJ, Lv JJ, Schmull S, Huang RT, Li J. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch. Biomed Mater. 2017;12(6):065006. Published 2017 Oct 5. doi:10.1088/1748-605X/aa801b(IF:2.469)
[120] Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z. Long-Term Exposure to Low-Dose Lead Induced Deterioration in Bone Microstructure of Male Mice. Biol Trace Elem Res. 2020;195(2):491-498. doi:10.1007/s12011-019-01864-7(IF:2.431)
[121] Zhang X, Li X, Sheng Z, et al. Effects of Combined Exposure to Cadmium and High-Fat Diet on Bone Quality in Male Mice. Biol Trace Elem Res. 2020;193(2):434-444. doi:10.1007/s12011-019-01713-7(IF:2.431)
[122] Wang W, Shao A, Amombo E, Fan S, Xu X, Fu J. Transcriptome-wide identification of MAPKKK genes in bermudagrass (Cynodon dactylon L.) and their potential roles in low temperature stress responses. PeerJ. 2020;8:e10159. Published 2020 Oct 28. doi:10.7717/peerj.10159(IF:2.379)
[123] Ding Y, Liu G, Zeng F, Yan Y, Jing H, Jiang X. Adrenal gland responses surgical castration and immunocastration by different compensatory manners to increase DHEA secretion [published online ahead of print, 2021 Dec 14]. Anim Biotechnol. 2021;1-8. doi:10.1080/10495398.2021.2007116(IF:2.271)
[124] Zhang LL, Zhang XY, Lu YY, Bi YD, Liu XL, Fang F. The Role of Autophagy in Murine Cytomegalovirus Hepatitis. Viral Immunol. 2021;34(4):241-255. doi:10.1089/vim.2020.0024(IF:2.257)
[125] Li X, Chen T, Han Y, et al. Potential role of Methoprene-tolerant (Met) in methyl farnesoate-mediated vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol. 2021;252:110524. doi:10.1016/j.cbpb.2020.110524(IF:2.219)
[126] Chen T, Xu R, Sheng N, et al. Molecular evidence for farnesoic acid O-methyltransferase (FAMeT) involved in the biosynthesis of vitellogenin in the Chinese mitten crab Eriocheir sinensis. Anim Reprod Sci. 2021;234:106868. doi:10.1016/j.anireprosci.2021.106868(IF:2.145)
[127] Wu Y, Cui H, Zhang Y, et al. Inonotus obliquus extract alleviates myocardial ischemia/reperfusion injury by suppressing endoplasmic reticulum stress. Mol Med Rep. 2021;23(1):77. doi:10.3892/mmr.2020.11716(IF:2.100)
[128] Li X, Chen T, Jiang H, et al. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci. 2021;224:106653. doi:10.1016/j.anireprosci.2020.106653(IF:1.660)
[129] Liu X, Pi B, Pu J, Cheng C, Fang J, Yu B. Genome-wide analysis of chloride channel-encoding gene family members and identification of CLC genes that respond to Cl/salt stress in upland cotton. Mol Biol Rep. 2020;47(12):9361-9371. doi:10.1007/s11033-020-06023-z(IF:1.402)
[130] Li X, Lei Y, Yu Y, et al. Discovery and characterization of a novel splice variant of the p53 tumor suppressor gene in a human T cell leukemia cellline. Int J Clin Exp Pathol. 2020;13(5):1121-1135. Published 2020 May 1. (IF:0.252)
[131] Li X, Li M, Xu J, Zhang X, Xiao W, Zhang Z. Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice. J Toxicol. 2019;2019:8121834. Published 2019 Jun 20. doi:10.1155/2019/8121834(IF:0.000)

TaqMan多重qPCR预混液|Hieff Unicon® Universal TaqMan multiplex qPCR master mix

TaqMan多重qPCR预混液|Hieff Unicon® Universal TaqMan multiplex qPCR master mix

产品说明书

FAQ

COA

已发表文献

本产品是2×Mix预混合试剂,能够实现在单个反应孔中进行多达四重的荧光定量PCR反应。本产品含有基因改造的抗体法热启动Taq酶,极大地提高了扩增灵敏度和特异性。同时,本产品对多重反应缓冲体系进行了深度优化,能够提高反应的扩增效率,促进低浓度模板的有效扩增。本产品可用于基因分型和基因多重定量分析。

 

产品信息

货号

11211ES03/ 11211ES08 / 11211ES09 / 11211ES20/ 11211ES60/ 11211ES61

规格

1 mL/5×1 mL/5 mL /20 mL/100×1 mL/100 mL

 

组分信息

组分编号

组分名称

11211ES03

(1 mL)

11211ES08

(5×1 mL)

11211ES09

(5 mL)

11211ES20

(20 mL)

11211ES60

(100×1 mL)

11211ES61

(100 mL)

11211

2× TaqMan qPCR mix

1 mL

5×1 mL

5 mL

20 mL

100×1 mL

100 mL

 

储存条件

-25~-15℃保存,有效期2年。

 

使用说明

  1. 反应体系

组分

体积(μL)

终浓度

2×TaqMan qPCR Mix

12.5

Primer mix (10 μM)**

X

0.1 μM-0.5 μM

Probe mix (10 μM)***

X

50 nM-250 nM

Rox reference dye****

0.5

Template DNA/cDNA*****

1-10

ddH2O

up to 25******

*使用前务必充分混匀,避免剧烈震荡产生过多气泡。

**引物浓度:Primer Mix中包含多对引物,通常每条引物终浓度为0.2 μM,也可以根据情况在0.1-0.5 μM间进行调整;

***探针浓度:Probe Mix中包含多条不同荧光信号的探针,每条探针的浓度可根据具体情况在50-250 nM间调整;

**** Rox reference dye:本产品不含Rox reference dye。如需,推荐使用货号10200ES产品;

*****模板稀释:qPCR灵敏度极高,建议将模板进行稀释使用。若模板为cDNA原液,则模板体积不超过总体积的1/10;

******反应体系:推荐使用25 μL、30 μL或50 μL,以保证目的基因扩增的有效性和重复性;

******* 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头,避免交叉污染和气溶胶污染;

  1. 参考扩增程序

步骤

温度

时间

循环数

预变性

95

5 min

1

变性

95

TaqMan多重qPCR预混液|Hieff Unicon® Universal TaqMan multiplex qPCR master mix15 sec

45

退火/延伸

60℃

30 sec

*扩增反应:扩增反应温度根据设计的引物Tm值进行调整;荧光信号采集:不同的qPCR仪器所需的荧光信号采集时间不同,请根据最短时间限制进行设置。

  1. 适用机型

Applied Biosystems: 5700, 7000, 7300, 7700, 7900HT Fast, StepOne™, StepOne Plus™, 7500, 7500 Fast, ViiA™7, QuantStudio™ 3 and 5, QuantStudio™ 6,7,12k Flex;

Bio-Rad: CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf: Mastercycler ep realplex, realplex 2 s;

Qiagen: Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science: LightCycler 480, LightCycler 2.0; Lightcycler 96;

Stratagene: MX3000P™, MX3005P™, MX4000P™;

Thermo Scientific: PikoReal Cycler; Cepheid: SmartCycler; Illumina: Eco qPCR.  

 

注意事项

1. 本产品仅作科研用途。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

Ver.CN20230911

 

Q:模板用量X 是多少?常用的量是多少?

A:(1)X 表示模板 DNA 量需要实验者在首次实验时进行摸索。首先对模板DNA 进行稀释(一般推荐 5-10 倍),然后模板量梯度上样,选择 CT 值落在  20-30  之间的最佳上样量。

(2)常用的量是逆转录 500-1000ng 总RNA,稀释 10 倍取 1μL cDNA 进行qPCR 实验。 Q:qPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:a)有效性要满足三个条件:

1)标准曲线:扩增效率范围:90-110%,对应斜率为

-3–3.5。R2>0.98。 (扩增效率=10-1/斜率-1),当斜率=-3.32 时,扩增效率=100%。

2)扩增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无Ct 值。(3) 熔解曲线:为单一峰。

b)3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

Q:Rox 的作用?

A:ROX 是一种参比染料,其作用是标准化荧光定量反应中的非PCR 震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。

Q:为什么扩增曲线不稳定(扩增曲线平台期锯齿状)?

A:可能原因:

a)RNA 纯度低,体系中存在较多杂质;推荐参数:OD260/OD280=1.8-2.0, OD260/OD230>2.0。随着 qPCR 反应的进行,阻碍反应的因素不断增加,若 RNA 纯度低,杂质多,会进一步影响仪器平台期的算法,导致出现锯齿状。

b)仪器长时间未做校准。仪器未校准会使仪器算法错误,导致各种异常结果。

解决方案:

a)先梯度加大模板稀释倍数看优化效果。若效果仍不好建议新制备高纯度RNA 重新实验。

b)定期(一般 1 年)进行仪器校准保养。

Q:为什么扩增曲线无法达到平台期?

A:可能原因:

a)模板量太低(CT 值 35 左右)。推荐 Ct 值:15<Ct<30。原因:Ct 值太大(如  Ct>30),刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

b)循环次数太少(30 cycles);循环次数过少(如 35)导致刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

c)试剂扩增效率低(CT 小,但无法达到平台期,曲线比较“趴”)。

解决方案:

a)提高模板量;参考 Q1 的优化方法。

b)提高循环次数;推荐循环数:一般 40。低丰度基因可设 45。

c)做标准曲线测定扩增效率,若确实偏低,则换试剂。

d)增加 Mg2+浓度(会增加非特异扩增)

Q:为什么出现双峰,并且较低峰 Tm 在 80℃之前?

A:较低峰 Tm 在 80℃之前可能原因:存在引物二聚体(一般mRNA 反转录后定量,产物在 100-150bp 左右,峰对应 Tm 值为 80-90℃。若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值在 70-80℃之间。故会在 80℃以前出现一个峰, 80℃以后出现一个峰),模板浓度过低或引物浓度过高。

解决方案:

a)适当提高退火温度; b)提高模板量,降低引物浓度; c)重新设计引物。

Q:为什么出现双峰,双峰 Tm 都在 80℃以前?

A:双峰Tm 都在 80℃以前的可能原因:做 MicroRNA 定量时存在引物二聚体。Micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十 bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃ 以前出现双峰。

优化方法:提高退火温度、降低引物浓度或重新设计引物等方式优化。

Q:为什么出现双峰,并且双峰Tm 都在 80℃以后?

A:可能原因:

a)引物特异性过差导致非特异性产物扩增。

b)交叉污染。

c)gDNA 污染,可通过 NRC 进行确认。

解决方案:

a)Blast 检查引物特异性,差则重新设计引物。

b)超净台中操作,注意更换 Tip 头,避免交叉污染。

c)通过 NRC 阴性对照进行确认,若有,需重新制备模板。

Q:为什么是单峰,但 Tm 在 80℃之前?

A:可能原因:扩增产物是完全的引物二聚体,可能是未加模板。

注:若 microRNA,则结果正常(做 microRNA 定量时存在引物二聚体。micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应 Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃以前出现双峰)。

解决方案:

进行高分辨率琼脂糖电泳,检测有无目的条带,以确定模板是否加入。优化方法:新配制无误的反应体系,重新实验。

Q:为什么是单峰,但峰不尖锐?

A:可能原因:

存在大小相近的非特异性扩增

解决方案:

a)温度跨度不高于 7℃,视为可用结果(即 Tm 值跨度<7℃可认为是同一种产物);

b)进行高浓度琼脂糖电泳(高分辨率),确认是否为单一条带。

[1] Zhang P, Lu S, Liu Z, et al. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr. 2021;8:790697. Published 2021 Dec 14. doi:10.3389/fnut.2021.790697(IF:6.576)
[2] Xu B, Zhang C, Jiang A, et al. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. J Biol Chem. 2022;298(7):102115. doi:10.1016/j.jbc.2022.102115(IF:5.157)

本产品是2×Mix预混合试剂,能够实现在单个反应孔中进行多达四重的荧光定量PCR反应。本产品含有基因改造的抗体法热启动Taq酶,极大地提高了扩增灵敏度和特异性。同时,本产品对多重反应缓冲体系进行了深度优化,能够提高反应的扩增效率,促进低浓度模板的有效扩增。本产品可用于基因分型和基因多重定量分析。

 

产品信息

货号

11211ES03/ 11211ES08 / 11211ES09 / 11211ES20/ 11211ES60/ 11211ES61

规格

1 mL/5×1 mL/5 mL /20 mL/100×1 mL/100 mL

 

组分信息

组分编号

组分名称

11211ES03

(1 mL)

11211ES08

(5×1 mL)

11211ES09

(5 mL)

11211ES20

(20 mL)

11211ES60

(100×1 mL)

11211ES61

(100 mL)

11211

2× TaqMan qPCR mix

1 mL

5×1 mL

5 mL

20 mL

100×1 mL

100 mL

 

储存条件

-25~-15℃保存,有效期2年。

 

使用说明

  1. 反应体系

组分

体积(μL)

终浓度

2×TaqMan qPCR Mix

12.5

Primer mix (10 μM)**

X

0.1 μM-0.5 μM

Probe mix (10 μM)***

X

50 nM-250 nM

Rox reference dye****

0.5

Template DNA/cDNA*****

1-10

ddH2O

up to 25******

*使用前务必充分混匀,避免剧烈震荡产生过多气泡。

**引物浓度:Primer Mix中包含多对引物,通常每条引物终浓度为0.2 μM,也可以根据情况在0.1-0.5 μM间进行调整;

***探针浓度:Probe Mix中包含多条不同荧光信号的探针,每条探针的浓度可根据具体情况在50-250 nM间调整;

**** Rox reference dye:本产品不含Rox reference dye。如需,推荐使用货号10200ES产品;

*****模板稀释:qPCR灵敏度极高,建议将模板进行稀释使用。若模板为cDNA原液,则模板体积不超过总体积的1/10;

******反应体系:推荐使用25 μL、30 μL或50 μL,以保证目的基因扩增的有效性和重复性;

******* 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头,避免交叉污染和气溶胶污染;

  1. 参考扩增程序

步骤

温度

时间

循环数

预变性

95

5 min

1

变性

95

TaqMan多重qPCR预混液|Hieff Unicon® Universal TaqMan multiplex qPCR master mix15 sec

45

退火/延伸

60℃

30 sec

*扩增反应:扩增反应温度根据设计的引物Tm值进行调整;荧光信号采集:不同的qPCR仪器所需的荧光信号采集时间不同,请根据最短时间限制进行设置。

  1. 适用机型

Applied Biosystems: 5700, 7000, 7300, 7700, 7900HT Fast, StepOne™, StepOne Plus™, 7500, 7500 Fast, ViiA™7, QuantStudio™ 3 and 5, QuantStudio™ 6,7,12k Flex;

Bio-Rad: CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf: Mastercycler ep realplex, realplex 2 s;

Qiagen: Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science: LightCycler 480, LightCycler 2.0; Lightcycler 96;

Stratagene: MX3000P™, MX3005P™, MX4000P™;

Thermo Scientific: PikoReal Cycler; Cepheid: SmartCycler; Illumina: Eco qPCR.  

 

注意事项

1. 本产品仅作科研用途。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

 

Ver.CN20230911

 

Q:模板用量X 是多少?常用的量是多少?

A:(1)X 表示模板 DNA 量需要实验者在首次实验时进行摸索。首先对模板DNA 进行稀释(一般推荐 5-10 倍),然后模板量梯度上样,选择 CT 值落在  20-30  之间的最佳上样量。

(2)常用的量是逆转录 500-1000ng 总RNA,稀释 10 倍取 1μL cDNA 进行qPCR 实验。 Q:qPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:a)有效性要满足三个条件:

1)标准曲线:扩增效率范围:90-110%,对应斜率为

-3–3.5。R2>0.98。 (扩增效率=10-1/斜率-1),当斜率=-3.32 时,扩增效率=100%。

2)扩增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无Ct 值。(3) 熔解曲线:为单一峰。

b)3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

Q:Rox 的作用?

A:ROX 是一种参比染料,其作用是标准化荧光定量反应中的非PCR 震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。

Q:为什么扩增曲线不稳定(扩增曲线平台期锯齿状)?

A:可能原因:

a)RNA 纯度低,体系中存在较多杂质;推荐参数:OD260/OD280=1.8-2.0, OD260/OD230>2.0。随着 qPCR 反应的进行,阻碍反应的因素不断增加,若 RNA 纯度低,杂质多,会进一步影响仪器平台期的算法,导致出现锯齿状。

b)仪器长时间未做校准。仪器未校准会使仪器算法错误,导致各种异常结果。

解决方案:

a)先梯度加大模板稀释倍数看优化效果。若效果仍不好建议新制备高纯度RNA 重新实验。

b)定期(一般 1 年)进行仪器校准保养。

Q:为什么扩增曲线无法达到平台期?

A:可能原因:

a)模板量太低(CT 值 35 左右)。推荐 Ct 值:15<Ct<30。原因:Ct 值太大(如  Ct>30),刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

b)循环次数太少(30 cycles);循环次数过少(如 35)导致刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

c)试剂扩增效率低(CT 小,但无法达到平台期,曲线比较“趴”)。

解决方案:

a)提高模板量;参考 Q1 的优化方法。

b)提高循环次数;推荐循环数:一般 40。低丰度基因可设 45。

c)做标准曲线测定扩增效率,若确实偏低,则换试剂。

d)增加 Mg2+浓度(会增加非特异扩增)

Q:为什么出现双峰,并且较低峰 Tm 在 80℃之前?

A:较低峰 Tm 在 80℃之前可能原因:存在引物二聚体(一般mRNA 反转录后定量,产物在 100-150bp 左右,峰对应 Tm 值为 80-90℃。若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值在 70-80℃之间。故会在 80℃以前出现一个峰, 80℃以后出现一个峰),模板浓度过低或引物浓度过高。

解决方案:

a)适当提高退火温度; b)提高模板量,降低引物浓度; c)重新设计引物。

Q:为什么出现双峰,双峰 Tm 都在 80℃以前?

A:双峰Tm 都在 80℃以前的可能原因:做 MicroRNA 定量时存在引物二聚体。Micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十 bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃ 以前出现双峰。

优化方法:提高退火温度、降低引物浓度或重新设计引物等方式优化。

Q:为什么出现双峰,并且双峰Tm 都在 80℃以后?

A:可能原因:

a)引物特异性过差导致非特异性产物扩增。

b)交叉污染。

c)gDNA 污染,可通过 NRC 进行确认。

解决方案:

a)Blast 检查引物特异性,差则重新设计引物。

b)超净台中操作,注意更换 Tip 头,避免交叉污染。

c)通过 NRC 阴性对照进行确认,若有,需重新制备模板。

Q:为什么是单峰,但 Tm 在 80℃之前?

A:可能原因:扩增产物是完全的引物二聚体,可能是未加模板。

注:若 microRNA,则结果正常(做 microRNA 定量时存在引物二聚体。micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应 Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃以前出现双峰)。

解决方案:

进行高分辨率琼脂糖电泳,检测有无目的条带,以确定模板是否加入。优化方法:新配制无误的反应体系,重新实验。

Q:为什么是单峰,但峰不尖锐?

A:可能原因:

存在大小相近的非特异性扩增

解决方案:

a)温度跨度不高于 7℃,视为可用结果(即 Tm 值跨度<7℃可认为是同一种产物);

b)进行高浓度琼脂糖电泳(高分辨率),确认是否为单一条带。

[1] Zhang P, Lu S, Liu Z, et al. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr. 2021;8:790697. Published 2021 Dec 14. doi:10.3389/fnut.2021.790697(IF:6.576)
[2] Xu B, Zhang C, Jiang A, et al. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. J Biol Chem. 2022;298(7):102115. doi:10.1016/j.jbc.2022.102115(IF:5.157)

nanohelix 多重 PCR 2x 预混液简介

nanohelix 多重 PCR 2x 预混液简介

 

多重 PCR 2x 预混液

  • 用于多重 PCR 的 2 倍预混液,最多 13 重 

  • *的特异性和高生产力 

  • 自动热启动 PCR 

  • 为复杂的多重 PCR 提供方便和快速的设置 

  • 通过内置 UDG 系统防止残留污染

 

产品

货号 产品 特征
nanohelix BMPR 多重 PCR 2x 预混液
nanohelix BMPU 多重 PCR 2x 预混液,带 UDG + UDG 系统*

 

Multiplex PCR 2x Premix是设置复杂多重 PCR 的不错之选,是一种预混合溶液,包含HelixAmp™ Hot-Taq聚合酶、dNTP和 2x 浓度的优化缓冲液。Multiplex PCR 2x Premix旨在为热启动 PCR 提供高的特异性,并大限度地减少反应混合物中引物之间的中断。使用 UDG 系统可以去除残留污染的 PCR 产物。 

 

   

应用 

  • 多重 PCR(常规)

  • 等位基因特异性PCR

  • SNP分析和基因分型

 

 

特性:传统的多重 PCR 具有防止残留污染的功能。热启动。

 

热活化: +95°C 15 分钟。

 

活性测试:对应于参考(9个目标与人类基因组DNA的常规多重PCR)

 

稳定性: -20°C 下 12 个月

 

 

 

Hifair® Ⅲ第1链cDNA合成即用型预混液|Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix

Hifair® Ⅲ第1链cDNA合成即用型预混液|Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix

产品说明书

FAQ

COA

已发表文献

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix基于Hifair® Ⅲ Reverse Transcriptase而开发的即用型预混液。与Hifair® Ⅱ Reverse Transcriptase相比,Hifair® Ⅲ Reverse Transcriptase热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录。

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅲ Reverse Transcriptase,RNase inhibitor,dNTP,Random primers/Oligo dT primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free ddH2O即可进行反应。

产品组分

组分编号

组分名称

产品编号/规格

11137ES10 (10 T)

11137ES60 (100 T)

11137-A

RNase-free H2O

1 mL

2×1 mL

11137-B

4×Hifair® Ⅲ SuperMix

50 μL

500 μL

 

产品应用

适用于 RT-qPCR 实验。

 

运输和保存方法

冰袋运输。-20ºC保存,有效期18个月。

 

第一链 cDNA 合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase-free H2O

To 20 μL

25℃

5 min

4×Hifair® Ⅲ SuperMix

5 μL

55℃

15 min

Total RNA

10 pg -5 μg

85℃

5 min

or mRNA

10 pg-500 ng

   

【注】:1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA;

2. 逆转录温度:推荐使用55℃。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60℃。

※ 逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

 

注意事项

1.可以室温溶解,溶解后宜存放于冰盒内或冰浴上,使用完毕后应立即置于-20℃保存。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅作科研用途! 

HB220308

 

Q:逆转录试剂 11137ES 中引物是随机引物还是oligo dT,还是二者的混合物?

A:二者的混合物。

Q:能否用来做miRNA/circRNA/lncRNA 的逆转录?

A:有A 尾的 lncRNA 可以逆转录, circRNA miRNA 和无 A 尾的 lncRNA 用 不能进行逆转录。microRNA 需要特殊的茎环引物, 需特别针对的逆转录试剂盒。

Q:11137 可以逆转真菌(或其他物种)RNA 吗?

A:RNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后,逆转录试剂盒都可以用,没有特别针对的。

[1] Hu X, Pang J, Zhang J, et al. Discovery of Novel GR Ligands toward Druggable GR Antagonist Conformations Identified by MD Simulations and Markov State Model Analysis. Adv Sci (Weinh). 2022;9(3):e2102435. doi:10.1002/advs.202102435(IF:16.806)
[2] Zhong Z, Wu X, Wang Y, et al. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater. 2021;10:195-206. Published 2021 Sep 16. doi:10.1016/j.bioactmat.2021.09.013(IF:14.593)
[3] Liu J, Qu M, Wang C, et al. A Dual-Cross-Linked Hydrogel Patch for Promoting Diabetic Wound Healing. Small. 2022;18(17):e2106172. doi:10.1002/smll.202106172(IF:13.281)
[4] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[5] Yuan H, Zhao L, Yuan Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics. 2021;11(17):8362-8378. Published 2021 Jul 25. doi:10.7150/thno.57531(IF:11.556)
[6] Kong D, Pan X, Jing Y, et al. ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf. New Phytol. 2021;230(4):1533-1549. doi:10.1111/nph.17293(IF:10.152)
[7] Mao S, Wang B, Yue L, Xia W. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym. 2021;262:117972. doi:10.1016/j.carbpol.2021.117972(IF:9.381)
[8] Wang S, Li Y, Zhong L, et al. Efficient gene editing through an intronic selection marker in cells. Cell Mol Life Sci. 2022;79(2):111. Published 2022 Jan 31. doi:10.1007/s00018-022-04152-1(IF:9.261)
[9] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[10] Wang X, Hu Y, He W, et al. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation [published online ahead of print, 2022 Jun 1]. Plant Commun. 2022;100345. doi:10.1016/j.xplc.2022.100345(IF:8.625)
[11] Deng X, Ye D, Hua K, et al. MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor. Cell Death Dis. 2021;12(9):810. Published 2021 Aug 26. doi:10.1038/s41419-021-04105-9(IF:8.469)
[12] Wang Y, Xue T, Wang M, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens Actuators B Chem. 2022;362:131765. doi:10.1016/j.snb.2022.131765(IF:7.460)
[13] Fu W, Zhang M, Liao J, et al. Discovery of a Novel Androgen Receptor Antagonist Manifesting Evidence to Disrupt the Dimerization of the Ligand-Binding Domain via Attenuating the Hydrogen-Bonding Network Between the Two Monomers. J Med Chem. 2021;64(23):17221-17238. doi:10.1021/acs.jmedchem.1c01287(IF:7.446)
[14] Cen Y, Zou X, Zhong Q, et al. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radic Biol Med. 2022;184:17-29. doi:10.1016/j.freeradbiomed.2022.03.016(IF:7.376)
[15] Shi W, Ma Q, Yin W, et al. StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato [published online ahead of print, 2022 May 2]. J Exp Bot. 2022;erac171. doi:10.1093/jxb/erac171(IF:6.992)
[16] Zhang DW, Ye JJ, Sun Y, et al. CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis. J Inflamm Res. 2022;15:2491-2507. Published 2022 Apr 20. doi:10.2147/JIR.S355764(IF:6.922)
[17] Wang S, Huang J, Liu F, et al. Isosteviol Sodium Exerts Anti-Colitic Effects on BALB/c Mice with Dextran Sodium Sulfate-Induced Colitis Through Metabolic Reprogramming and Immune Response Modulation. J Inflamm Res. 2021;14:7107-7130. Published 2021 Dec 20. doi:10.2147/JIR.S344990(IF:6.922)
[18] Ma C, Zhang L, He T, et al. Single cell Raman spectroscopy to identify different stages of proliferating human hepatocytes for cell therapy. Stem Cell Res Ther. 2021;12(1):555. Published 2021 Oct 30. doi:10.1186/s13287-021-02619-9(IF:6.832)
[19] Jiang M, Tang T, Liang X, et al. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Prolif. 2021;54(6):e13042. doi:10.1111/cpr.13042(IF:6.831)
[20] Zhang Y, Li Y, Sun C, et al. Effect of Pterostilbene, a Natural Derivative of Resveratrol, in the Treatment of Colorectal Cancer through Top1/Tdp1-Mediated DNA Repair Pathway. Cancers (Basel). 2021;13(16):4002. Published 2021 Aug 9. doi:10.3390/cancers13164002(IF:6.639)
[21] Wang S, Huang J, Tan KS, Deng L, Liu F, Tan W. Isosteviol Sodium Ameliorates Dextran Sodium Sulfate-Induced Chronic Colitis through the Regulation of Metabolic Profiling, Macrophage Polarization, and NF-κB Pathway. Oxid Med Cell Longev. 2022;2022:4636618. Published 2022 Jan 27. doi:10.1155/2022/4636618(IF:6.543)
[22] Hu X, Pang J, Chen C, et al. Discovery of novel non-steroidal selective glucocorticoid receptor modulators by structure- and IGN-based virtual screening, structural optimization, and biological evaluation. Eur J Med Chem. 2022;237:114382. doi:10.1016/j.ejmech.2022.114382(IF:6.514)
[23] Jiao C, Zou J, Chen Z, et al. Dietary Glutamine Inclusion Regulates Immune and Antioxidant System, as Well as Programmed Cell Death in Fish to Protect against Flavobacterium columnare Infection. Antioxidants (Basel). 2021;11(1):44. Published 2021 Dec 26. doi:10.3390/antiox11010044(IF:6.313)
[24] Ma D, Wei J, Chen S, et al. Fucoidan Inhibits the Progression of Hepatocellular Carcinoma via Causing lncRNA LINC00261 Overexpression. Front Oncol. 2021;11:653902. Published 2021 Apr 13. doi:10.3389/fonc.2021.653902(IF:6.244)
[25] Zhao LN, Yuan HF, Wang YF, et al. IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin. 2022;43(6):1484-1494. doi:10.1038/s41401-021-00765-7(IF:6.150)
[26] Yuan HF, Zhao M, Zhao LN, et al. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours [published online ahead of print, 2022 Jan 19]. Acta Pharmacol Sin. 2022;10.1038/s41401-021-00841-y. doi:10.1038/s41401-021-00841-y(IF:6.150)
[27] Pang JP, Shen C, Zhou WF, et al. Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacol Sin. 2022;43(1):229-239. doi:10.1038/s41401-021-00632-5(IF:6.150)
[28] Pang JP, Hu XP, Wang YX, et al. Discovery of a novel nonsteroidal selective glucocorticoid receptor modulator by virtual screening and bioassays [published online ahead of print, 2022 Feb 2]. Acta Pharmacol Sin. 2022;1-10. doi:10.1038/s41401-021-00855-6(IF:6.150)
[29] Zi Z, Zhao H, Wang H, Ma X, Wei F. B7-H3 Chimeric Antigen Receptor Redirected T Cells Target Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel). 2020;12(12):3815. Published 2020 Dec 17. doi:10.3390/cancers12123815(IF:6.126)
[30] Yu X, Hu L, Li S, et al. Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis. 2019;10(4):280. Published 2019 Mar 25. doi:10.1038/s41419-019-1509-1(IF:5.959)
[31] Shi X, Ye C, Qin X, et al. Novel Pituitary Actions of TAC4 Gene Products in Teleost. Int J Mol Sci. 2021;22(23):12893. Published 2021 Nov 29. doi:10.3390/ijms222312893(IF:5.924)
[32] Yang N, Zhang X, Li L, et al. Ginsenoside Rc Promotes Bone Formation in Ovariectomy-Induced Osteoporosis In Vivo and Osteogenic Differentiation In Vitro. Int J Mol Sci. 2022;23(11):6187. Published 2022 May 31. doi:10.3390/ijms23116187(IF:5.924)
[33] Wang X, Li W, Jiang H, et al. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci. 2022;23(12):6442. Published 2022 Jun 9. doi:10.3390/ijms23126442(IF:5.924)
[34] Jiang R, Xu J, Zhang Y, Zhu X, Liu J, Tan Y. Ligustrazine Alleviate Acute Lung Injury Through Suppressing Pyroptosis and Apoptosis of Alveolar Macrophages. Front Pharmacol. 2021;12:680512. Published 2021 May 28. doi:10.3389/fphar.2021.680512(IF:5.811)
[35] Xie T, Chen X, Chen W, et al. Curcumin is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front Pharmacol. 2021;12:796565. Published 2021 Dec 10. doi:10.3389/fphar.2021.796565(IF:5.811)
[36] Sun L, Cao Y, Kong Q, et al. Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation. Genomics. 2021;113(5):2925-2933. doi:10.1016/j.ygeno.2021.06.028(IF:5.736)
[37] Xia C, Qin X, Zhou L, et al. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne). 2021;12:762826. Published 2021 Nov 3. doi:10.3389/fendo.2021.762826(IF:5.555)
[38] Yuan J, Wang JM, Li ZW, et al. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med. 2021;16(1):55. Published 2021 Jul 8. doi:10.1186/s13020-021-00465-8(IF:5.455)
[39] Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res. 2022;254:126912. doi:10.1016/j.micres.2021.126912(IF:5.415)
[40] Zhang X, Zhang B, Li L, Li X, Zhang J, Chen G. Fermented noni (Morinda citrifolia L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells [published online ahead of print, 2022 Jul 14]. Food Funct. 2022;10.1039/d2fo00595f. doi:10.1039/d2fo00595f(IF:5.396)
[41] Yu S, Liu S, Wang N, et al. Novel insights into antidepressant mechanism of Kai Xin San formula: Inhibiting NLRP3 inflammasome activation by promoting autophagy. Phytomedicine. 2021;93:153792. doi:10.1016/j.phymed.2021.153792(IF:5.340)
[42] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[43] Qi M, Zhu X, Yu X, et al. Preparation of W/O Hypaphorine-Chitosan Nanoparticles and Its Application on Promoting Chronic Wound Healing via Alleviating Inflammation Block. Nanomaterials (Basel). 2021;11(11):2830. Published 2021 Oct 25. doi:10.3390/nano11112830(IF:5.076)
[44] Zhang Y, Sun M, Jian S, et al. mPEG2k-PCLx Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm. 2021;18(7):2586-2599. doi:10.1021/acs.molpharmaceut.1c00078(IF:4.939)
[45] Hu R, Zhu X, Chen C, Xu R, Li Y, Xu W. RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs. Cell Prolif. 2018;51(6):e12508. doi:10.1111/cpr.12508(IF:4.936)
[46] Li Z, Wang Y, Hu R, Xu R, Xu W. LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity. Cell Prolif. 2018;51(6):e12504. doi:10.1111/cpr.12504(IF:4.936)
[47] Wang Y, Hu W, Deng Z, He X. Rapid identification of magnesium ascorbyl phosphate utilizing phosphatase through a chromogenic change-coupled activity assay. Appl Microbiol Biotechnol. 2021;105(7):2901-2909. doi:10.1007/s00253-021-11229-7(IF:4.813)
[48] Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol. 2022;13:855959. Published 2022 Apr 21. doi:10.3389/fphys.2022.855959(IF:4.566)
[49] Xu X, Liu W, Liu X, et al. Genetic manipulation of bermudagrass photosynthetic biosynthesis using Agrobacterium-mediated transformation. Physiol Plant. 2022;174(3):e13710. doi:10.1111/ppl.13710(IF:4.500)
[50] Wang Y, Zhu GQ, Tian D, et al. Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer. 2022;22(1):316. Published 2022 Mar 24. doi:10.1186/s12885-022-09377-8(IF:4.430)
[51] Yue L, Lin H, Yuan S, et al. miR-1251-5p Overexpression Inhibits Proliferation, Migration, and Immune Escape in Clear Cell Renal Cell Carcinoma by Targeting NPTX2. J Oncol. 2022;2022:3058588. Published 2022 Mar 10. doi:10.1155/2022/3058588(IF:4.375)
[52] Wang Y, Zhang J, Xu Z, et al. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma. J Ethnopharmacol. 2022;292:115179. doi:10.1016/j.jep.2022.115179(IF:4.360)
[53] Xiang B, Yang J, Zhang J, et al. The role of genes affected by human evolution marker GNA13 in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2020;98:109764. doi:10.1016/j.pnpbp.2019.109764(IF:4.315)
[54] Lei J, Zhang X, Tan R, Li Y, Zhao K, Niu H. Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med. 2022;11(12):3319. Published 2022 Jun 9. doi:10.3390/jcm11123319(IF:4.242)
[55] Ye W, Yao M, Dong Y, et al. Remdesivir (GS-5734) Impedes Enterovirus Replication Through Viral RNA Synthesis Inhibition [published correction appears in Front Microbiol. 2020 Nov 23;11:621197]. Front Microbiol. 2020;11:1105. Published 2020 Jun 12. doi:10.3389/fmicb.2020.01105(IF:4.236)
[56] Zhang Q, Wu JF, Shi QL, et al. The Neuronal Activation of Deep Cerebellar Nuclei Is Essential for Environmental Enrichment-Induced Post-Stroke Motor Recovery. Aging Dis. 2019;10(3):530-543. Published 2019 Jun 1. doi:10.14336/AD.2018.1220(IF:4.232)
[57] Lv N, Zhao M, Han Y, et al. The roles of bone morphogenetic protein 2 in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection. Toxicol Appl Pharmacol. 2018;352:68-76. doi:10.1016/j.taap.2018.05.028(IF:4.219)
[58] Su H, Liang J, Abou-Elwafa SF, et al. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biol. 2021;21(1):453. Published 2021 Oct 6. doi:10.1186/s12870-021-03231-y(IF:4.215)
[59] Shan N, Zhang Y, Xu Y, et al. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022;22(1):108. Published 2022 Mar 9. doi:10.1186/s12870-022-03498-9(IF:4.215)
[60] Hu Q, Xu S, Ye C, Jia J, Zhou L, Hu G. Novel Pituitary Actions of Epidermal Growth Factor: Receptor Specificity and Signal Transduction for UTS1, EGR1, and MMP13 Regulation by EGF. Int J Mol Sci. 2019;20(20):5172. Published 2019 Oct 18. doi:10.3390/ijms20205172(IF:4.183)
[61] Cui P, Lin Q, Fang D, et al. Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid β-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. Plant Cell Physiol. 2018;59(10):1990-2003. doi:10.1093/pcp/pcy117(IF:4.059)
[62] Wang Y, Li N, Tian D, et al. Analysis of m6A-Related lncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma. Cancer Manag Res. 2021;13:6451-6471. Published 2021 Aug 16. doi:10.2147/CMAR.S322179(IF:3.989)
[63] Xue J, Chen L, Cheng H, et al. The Identification and Validation of Hub Genes Associated with Acute Myocardial Infarction Using Weighted Gene Co-Expression Network Analysis. J Cardiovasc Dev Dis. 2022;9(1):30. Published 2022 Jan 17. doi:10.3390/jcdd9010030(IF:3.948)
[64] Hou J, Sun Y, Wang L, Jiang Y, Chen N, Tong S. Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in Populus trichocarpa. Plants (Basel). 2021;10(11):2284. Published 2021 Oct 25. doi:10.3390/plants10112284(IF:3.935)
[65] Wu J, Lu J, Huang J, et al. Variations in Energy Metabolism Precede Alterations in Cardiac Structure and Function in Hypertrophic Preconditioning. Front Cardiovasc Med. 2020;7:602100. Published 2020 Dec 11. doi:10.3389/fcvm.2020.602100(IF:3.915)
[66] Guo Q, Li Y, Chen Y, et al. β-Elemene induces apoptosis by activating the P53 pathway in human hypertrophic scar fibroblasts. IUBMB Life. 2022;74(6):508-518. doi:10.1002/iub.2614(IF:3.885)
[67] Jiang SJ, Xiao X, Zheng J, et al. Antibacterial and antibiofilm activities of novel antimicrobial peptide DP7 against the periodontal pathogen Porphyromonas gingivalis [published online ahead of print, 2022 May 14]. J Appl Microbiol. 2022;10.1111/jam.15614. doi:10.1111/jam.15614(IF:3.772)
[68] Zhang F, Teng Z, Wang L, Wang L, Huang T, Zhang X. Dietary Selenium Deficiency and Excess Accelerate Ubiquitin-Mediated Protein Degradation in the Muscle of Rainbow Trout (Oncorhynchus mykiss) via Akt/FoxO3a and NF-κB Signaling Pathways. Biol Trace Elem Res. 2022;200(3):1361-1375. doi:10.1007/s12011-021-02726-x(IF:3.738)
[69] YujiaLiu, Shi C, Zhang G, et al. Antimicrobial mechanism of 4-hydroxyphenylacetic acid on Listeria monocytogenes membrane and virulence. Biochem Biophys Res Commun. 2021;572:145-150. doi:10.1016/j.bbrc.2021.07.096(IF:3.575)
[70] Fu H, Zhang Z, Dai Y, Liu S, Fu E. Brequinar inhibits enterovirus replication by targeting biosynthesis pathway of pyrimidines. Am J Transl Res. 2020;12(12):8247-8255. Published 2020 Dec 25. (IF:3.375)
[71] Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered. 2022;13(1):1103-1114. doi:10.1080/21655979.2021.2017629(IF:3.269)
[72] Zhang Y, Zhang R, Lu L, et al. Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway. Bioengineered. 2022;13(4):8926-8936. doi:10.1080/21655979.2022.2056814(IF:3.269)
[73] Mei X, Din H, Zhao J, Tong J, Zhu W. Transcription factor Krüppel-like factor 5-regulated N-myc downstream-regulated gene 2 reduces IL-1β-induced chondrocyte inflammatory injury and extracellular matrix degradation. Bioengineered. 2021;12(1):7020-7032. doi:10.1080/21655979.2021.1971483(IF:3.269)
[74] Cao S, Li X, Feng T, et al. Hirudin promotes proliferation and osteogenic differentiation of HBMSCs via activation of cyclic guanosine monophosphate (cGMP)/protein kinase-G (PKG) signaling pathway. Bioengineered. 2022;13(3):6061-6069. doi:10.1080/21655979.2021.2008697(IF:3.269)
[75] Xu S, Zhou L, Guo S, et al. Different pituitary action of NK3Ra and NK3Rb in grass carp. Gen Comp Endocrinol. 2021;313:113829. doi:10.1016/j.ygcen.2021.113829(IF:2.822)
[76] Wang Y, Zhao S, Li G, Wang D, Jin Y. Neuroprotective Effect of HOTAIR Silencing on Isoflurane-Induced Cognitive Dysfunction via Sponging microRNA-129-5p and Inhibiting Neuroinflammation [published online ahead of print, 2022 Jan 13]. Neuroimmunomodulation. 2022;1-11. doi:10.1159/000521014(IF:2.492)
[77] Li J, Xu S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson's disease. Exp Ther Med. 2022;23(4):293. doi:10.3892/etm.2022.11223(IF:2.447)
[78] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[79] Qu D, Tan XH, Zhang KK, Wang Q, Wang HJ. ATF3 mRNA, but not BTG2, as a possible marker for vital reaction of skin contusion. Forensic Sci Int. 2019;303:109937. doi:10.1016/j.forsciint.2019.109937(IF:1.990)

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix基于Hifair® Ⅲ Reverse Transcriptase而开发的即用型预混液。与Hifair® Ⅱ Reverse Transcriptase相比,Hifair® Ⅲ Reverse Transcriptase热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录。

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix为即用型预混液,包含Hifair® Ⅲ Reverse Transcriptase,RNase inhibitor,dNTP,Random primers/Oligo dT primer mix和优化的缓冲体系,只需再加入模板RNA和RNase-free ddH2O即可进行反应。

产品组分

组分编号

组分名称

产品编号/规格

11137ES10 (10 T)

11137ES60 (100 T)

11137-A

RNase-free H2O

1 mL

2×1 mL

11137-B

4×Hifair® Ⅲ SuperMix

50 μL

500 μL

 

产品应用

适用于 RT-qPCR 实验。

 

运输和保存方法

冰袋运输。-20ºC保存,有效期18个月。

 

第一链 cDNA 合成操作步骤

逆转录反应体系

逆转录程序

组分

使用量

温度

时间

RNase-free H2O

To 20 μL

25℃

5 min

4×Hifair® Ⅲ SuperMix

5 μL

55℃

15 min

Total RNA

10 pg -5 μg

85℃

5 min

or mRNA

10 pg-500 ng

   

【注】:1. 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA;

2. 逆转录温度:推荐使用55℃。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60℃。

※ 逆转录产物可立即用于后续qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

 

注意事项

1.可以室温溶解,溶解后宜存放于冰盒内或冰浴上,使用完毕后应立即置于-20℃保存。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅作科研用途! 

HB220308

 

Q:逆转录试剂 11137ES 中引物是随机引物还是oligo dT,还是二者的混合物?

A:二者的混合物。

Q:能否用来做miRNA/circRNA/lncRNA 的逆转录?

A:有A 尾的 lncRNA 可以逆转录, circRNA miRNA 和无 A 尾的 lncRNA 用 不能进行逆转录。microRNA 需要特殊的茎环引物, 需特别针对的逆转录试剂盒。

Q:11137 可以逆转真菌(或其他物种)RNA 吗?

A:RNA 的物种与逆转录没有很大关系,RNA 质量与逆转录有关。所以,得到 RNA 后,逆转录试剂盒都可以用,没有特别针对的。

[1] Hu X, Pang J, Zhang J, et al. Discovery of Novel GR Ligands toward Druggable GR Antagonist Conformations Identified by MD Simulations and Markov State Model Analysis. Adv Sci (Weinh). 2022;9(3):e2102435. doi:10.1002/advs.202102435(IF:16.806)
[2] Zhong Z, Wu X, Wang Y, et al. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater. 2021;10:195-206. Published 2021 Sep 16. doi:10.1016/j.bioactmat.2021.09.013(IF:14.593)
[3] Liu J, Qu M, Wang C, et al. A Dual-Cross-Linked Hydrogel Patch for Promoting Diabetic Wound Healing. Small. 2022;18(17):e2106172. doi:10.1002/smll.202106172(IF:13.281)
[4] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[5] Yuan H, Zhao L, Yuan Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics. 2021;11(17):8362-8378. Published 2021 Jul 25. doi:10.7150/thno.57531(IF:11.556)
[6] Kong D, Pan X, Jing Y, et al. ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf. New Phytol. 2021;230(4):1533-1549. doi:10.1111/nph.17293(IF:10.152)
[7] Mao S, Wang B, Yue L, Xia W. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym. 2021;262:117972. doi:10.1016/j.carbpol.2021.117972(IF:9.381)
[8] Wang S, Li Y, Zhong L, et al. Efficient gene editing through an intronic selection marker in cells. Cell Mol Life Sci. 2022;79(2):111. Published 2022 Jan 31. doi:10.1007/s00018-022-04152-1(IF:9.261)
[9] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[10] Wang X, Hu Y, He W, et al. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation [published online ahead of print, 2022 Jun 1]. Plant Commun. 2022;100345. doi:10.1016/j.xplc.2022.100345(IF:8.625)
[11] Deng X, Ye D, Hua K, et al. MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor. Cell Death Dis. 2021;12(9):810. Published 2021 Aug 26. doi:10.1038/s41419-021-04105-9(IF:8.469)
[12] Wang Y, Xue T, Wang M, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens Actuators B Chem. 2022;362:131765. doi:10.1016/j.snb.2022.131765(IF:7.460)
[13] Fu W, Zhang M, Liao J, et al. Discovery of a Novel Androgen Receptor Antagonist Manifesting Evidence to Disrupt the Dimerization of the Ligand-Binding Domain via Attenuating the Hydrogen-Bonding Network Between the Two Monomers. J Med Chem. 2021;64(23):17221-17238. doi:10.1021/acs.jmedchem.1c01287(IF:7.446)
[14] Cen Y, Zou X, Zhong Q, et al. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radic Biol Med. 2022;184:17-29. doi:10.1016/j.freeradbiomed.2022.03.016(IF:7.376)
[15] Shi W, Ma Q, Yin W, et al. StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato [published online ahead of print, 2022 May 2]. J Exp Bot. 2022;erac171. doi:10.1093/jxb/erac171(IF:6.992)
[16] Zhang DW, Ye JJ, Sun Y, et al. CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis. J Inflamm Res. 2022;15:2491-2507. Published 2022 Apr 20. doi:10.2147/JIR.S355764(IF:6.922)
[17] Wang S, Huang J, Liu F, et al. Isosteviol Sodium Exerts Anti-Colitic Effects on BALB/c Mice with Dextran Sodium Sulfate-Induced Colitis Through Metabolic Reprogramming and Immune Response Modulation. J Inflamm Res. 2021;14:7107-7130. Published 2021 Dec 20. doi:10.2147/JIR.S344990(IF:6.922)
[18] Ma C, Zhang L, He T, et al. Single cell Raman spectroscopy to identify different stages of proliferating human hepatocytes for cell therapy. Stem Cell Res Ther. 2021;12(1):555. Published 2021 Oct 30. doi:10.1186/s13287-021-02619-9(IF:6.832)
[19] Jiang M, Tang T, Liang X, et al. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Prolif. 2021;54(6):e13042. doi:10.1111/cpr.13042(IF:6.831)
[20] Zhang Y, Li Y, Sun C, et al. Effect of Pterostilbene, a Natural Derivative of Resveratrol, in the Treatment of Colorectal Cancer through Top1/Tdp1-Mediated DNA Repair Pathway. Cancers (Basel). 2021;13(16):4002. Published 2021 Aug 9. doi:10.3390/cancers13164002(IF:6.639)
[21] Wang S, Huang J, Tan KS, Deng L, Liu F, Tan W. Isosteviol Sodium Ameliorates Dextran Sodium Sulfate-Induced Chronic Colitis through the Regulation of Metabolic Profiling, Macrophage Polarization, and NF-κB Pathway. Oxid Med Cell Longev. 2022;2022:4636618. Published 2022 Jan 27. doi:10.1155/2022/4636618(IF:6.543)
[22] Hu X, Pang J, Chen C, et al. Discovery of novel non-steroidal selective glucocorticoid receptor modulators by structure- and IGN-based virtual screening, structural optimization, and biological evaluation. Eur J Med Chem. 2022;237:114382. doi:10.1016/j.ejmech.2022.114382(IF:6.514)
[23] Jiao C, Zou J, Chen Z, et al. Dietary Glutamine Inclusion Regulates Immune and Antioxidant System, as Well as Programmed Cell Death in Fish to Protect against Flavobacterium columnare Infection. Antioxidants (Basel). 2021;11(1):44. Published 2021 Dec 26. doi:10.3390/antiox11010044(IF:6.313)
[24] Ma D, Wei J, Chen S, et al. Fucoidan Inhibits the Progression of Hepatocellular Carcinoma via Causing lncRNA LINC00261 Overexpression. Front Oncol. 2021;11:653902. Published 2021 Apr 13. doi:10.3389/fonc.2021.653902(IF:6.244)
[25] Zhao LN, Yuan HF, Wang YF, et al. IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin. 2022;43(6):1484-1494. doi:10.1038/s41401-021-00765-7(IF:6.150)
[26] Yuan HF, Zhao M, Zhao LN, et al. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours [published online ahead of print, 2022 Jan 19]. Acta Pharmacol Sin. 2022;10.1038/s41401-021-00841-y. doi:10.1038/s41401-021-00841-y(IF:6.150)
[27] Pang JP, Shen C, Zhou WF, et al. Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacol Sin. 2022;43(1):229-239. doi:10.1038/s41401-021-00632-5(IF:6.150)
[28] Pang JP, Hu XP, Wang YX, et al. Discovery of a novel nonsteroidal selective glucocorticoid receptor modulator by virtual screening and bioassays [published online ahead of print, 2022 Feb 2]. Acta Pharmacol Sin. 2022;1-10. doi:10.1038/s41401-021-00855-6(IF:6.150)
[29] Zi Z, Zhao H, Wang H, Ma X, Wei F. B7-H3 Chimeric Antigen Receptor Redirected T Cells Target Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel). 2020;12(12):3815. Published 2020 Dec 17. doi:10.3390/cancers12123815(IF:6.126)
[30] Yu X, Hu L, Li S, et al. Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis. 2019;10(4):280. Published 2019 Mar 25. doi:10.1038/s41419-019-1509-1(IF:5.959)
[31] Shi X, Ye C, Qin X, et al. Novel Pituitary Actions of TAC4 Gene Products in Teleost. Int J Mol Sci. 2021;22(23):12893. Published 2021 Nov 29. doi:10.3390/ijms222312893(IF:5.924)
[32] Yang N, Zhang X, Li L, et al. Ginsenoside Rc Promotes Bone Formation in Ovariectomy-Induced Osteoporosis In Vivo and Osteogenic Differentiation In Vitro. Int J Mol Sci. 2022;23(11):6187. Published 2022 May 31. doi:10.3390/ijms23116187(IF:5.924)
[33] Wang X, Li W, Jiang H, et al. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci. 2022;23(12):6442. Published 2022 Jun 9. doi:10.3390/ijms23126442(IF:5.924)
[34] Jiang R, Xu J, Zhang Y, Zhu X, Liu J, Tan Y. Ligustrazine Alleviate Acute Lung Injury Through Suppressing Pyroptosis and Apoptosis of Alveolar Macrophages. Front Pharmacol. 2021;12:680512. Published 2021 May 28. doi:10.3389/fphar.2021.680512(IF:5.811)
[35] Xie T, Chen X, Chen W, et al. Curcumin is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front Pharmacol. 2021;12:796565. Published 2021 Dec 10. doi:10.3389/fphar.2021.796565(IF:5.811)
[36] Sun L, Cao Y, Kong Q, et al. Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation. Genomics. 2021;113(5):2925-2933. doi:10.1016/j.ygeno.2021.06.028(IF:5.736)
[37] Xia C, Qin X, Zhou L, et al. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne). 2021;12:762826. Published 2021 Nov 3. doi:10.3389/fendo.2021.762826(IF:5.555)
[38] Yuan J, Wang JM, Li ZW, et al. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med. 2021;16(1):55. Published 2021 Jul 8. doi:10.1186/s13020-021-00465-8(IF:5.455)
[39] Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res. 2022;254:126912. doi:10.1016/j.micres.2021.126912(IF:5.415)
[40] Zhang X, Zhang B, Li L, Li X, Zhang J, Chen G. Fermented noni (Morinda citrifolia L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells [published online ahead of print, 2022 Jul 14]. Food Funct. 2022;10.1039/d2fo00595f. doi:10.1039/d2fo00595f(IF:5.396)
[41] Yu S, Liu S, Wang N, et al. Novel insights into antidepressant mechanism of Kai Xin San formula: Inhibiting NLRP3 inflammasome activation by promoting autophagy. Phytomedicine. 2021;93:153792. doi:10.1016/j.phymed.2021.153792(IF:5.340)
[42] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[43] Qi M, Zhu X, Yu X, et al. Preparation of W/O Hypaphorine-Chitosan Nanoparticles and Its Application on Promoting Chronic Wound Healing via Alleviating Inflammation Block. Nanomaterials (Basel). 2021;11(11):2830. Published 2021 Oct 25. doi:10.3390/nano11112830(IF:5.076)
[44] Zhang Y, Sun M, Jian S, et al. mPEG2k-PCLx Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm. 2021;18(7):2586-2599. doi:10.1021/acs.molpharmaceut.1c00078(IF:4.939)
[45] Hu R, Zhu X, Chen C, Xu R, Li Y, Xu W. RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs. Cell Prolif. 2018;51(6):e12508. doi:10.1111/cpr.12508(IF:4.936)
[46] Li Z, Wang Y, Hu R, Xu R, Xu W. LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity. Cell Prolif. 2018;51(6):e12504. doi:10.1111/cpr.12504(IF:4.936)
[47] Wang Y, Hu W, Deng Z, He X. Rapid identification of magnesium ascorbyl phosphate utilizing phosphatase through a chromogenic change-coupled activity assay. Appl Microbiol Biotechnol. 2021;105(7):2901-2909. doi:10.1007/s00253-021-11229-7(IF:4.813)
[48] Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol. 2022;13:855959. Published 2022 Apr 21. doi:10.3389/fphys.2022.855959(IF:4.566)
[49] Xu X, Liu W, Liu X, et al. Genetic manipulation of bermudagrass photosynthetic biosynthesis using Agrobacterium-mediated transformation. Physiol Plant. 2022;174(3):e13710. doi:10.1111/ppl.13710(IF:4.500)
[50] Wang Y, Zhu GQ, Tian D, et al. Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer. 2022;22(1):316. Published 2022 Mar 24. doi:10.1186/s12885-022-09377-8(IF:4.430)
[51] Yue L, Lin H, Yuan S, et al. miR-1251-5p Overexpression Inhibits Proliferation, Migration, and Immune Escape in Clear Cell Renal Cell Carcinoma by Targeting NPTX2. J Oncol. 2022;2022:3058588. Published 2022 Mar 10. doi:10.1155/2022/3058588(IF:4.375)
[52] Wang Y, Zhang J, Xu Z, et al. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma. J Ethnopharmacol. 2022;292:115179. doi:10.1016/j.jep.2022.115179(IF:4.360)
[53] Xiang B, Yang J, Zhang J, et al. The role of genes affected by human evolution marker GNA13 in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2020;98:109764. doi:10.1016/j.pnpbp.2019.109764(IF:4.315)
[54] Lei J, Zhang X, Tan R, Li Y, Zhao K, Niu H. Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med. 2022;11(12):3319. Published 2022 Jun 9. doi:10.3390/jcm11123319(IF:4.242)
[55] Ye W, Yao M, Dong Y, et al. Remdesivir (GS-5734) Impedes Enterovirus Replication Through Viral RNA Synthesis Inhibition [published correction appears in Front Microbiol. 2020 Nov 23;11:621197]. Front Microbiol. 2020;11:1105. Published 2020 Jun 12. doi:10.3389/fmicb.2020.01105(IF:4.236)
[56] Zhang Q, Wu JF, Shi QL, et al. The Neuronal Activation of Deep Cerebellar Nuclei Is Essential for Environmental Enrichment-Induced Post-Stroke Motor Recovery. Aging Dis. 2019;10(3):530-543. Published 2019 Jun 1. doi:10.14336/AD.2018.1220(IF:4.232)
[57] Lv N, Zhao M, Han Y, et al. The roles of bone morphogenetic protein 2 in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection. Toxicol Appl Pharmacol. 2018;352:68-76. doi:10.1016/j.taap.2018.05.028(IF:4.219)
[58] Su H, Liang J, Abou-Elwafa SF, et al. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biol. 2021;21(1):453. Published 2021 Oct 6. doi:10.1186/s12870-021-03231-y(IF:4.215)
[59] Shan N, Zhang Y, Xu Y, et al. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022;22(1):108. Published 2022 Mar 9. doi:10.1186/s12870-022-03498-9(IF:4.215)
[60] Hu Q, Xu S, Ye C, Jia J, Zhou L, Hu G. Novel Pituitary Actions of Epidermal Growth Factor: Receptor Specificity and Signal Transduction for UTS1, EGR1, and MMP13 Regulation by EGF. Int J Mol Sci. 2019;20(20):5172. Published 2019 Oct 18. doi:10.3390/ijms20205172(IF:4.183)
[61] Cui P, Lin Q, Fang D, et al. Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid β-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. Plant Cell Physiol. 2018;59(10):1990-2003. doi:10.1093/pcp/pcy117(IF:4.059)
[62] Wang Y, Li N, Tian D, et al. Analysis of m6A-Related lncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma. Cancer Manag Res. 2021;13:6451-6471. Published 2021 Aug 16. doi:10.2147/CMAR.S322179(IF:3.989)
[63] Xue J, Chen L, Cheng H, et al. The Identification and Validation of Hub Genes Associated with Acute Myocardial Infarction Using Weighted Gene Co-Expression Network Analysis. J Cardiovasc Dev Dis. 2022;9(1):30. Published 2022 Jan 17. doi:10.3390/jcdd9010030(IF:3.948)
[64] Hou J, Sun Y, Wang L, Jiang Y, Chen N, Tong S. Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in Populus trichocarpa. Plants (Basel). 2021;10(11):2284. Published 2021 Oct 25. doi:10.3390/plants10112284(IF:3.935)
[65] Wu J, Lu J, Huang J, et al. Variations in Energy Metabolism Precede Alterations in Cardiac Structure and Function in Hypertrophic Preconditioning. Front Cardiovasc Med. 2020;7:602100. Published 2020 Dec 11. doi:10.3389/fcvm.2020.602100(IF:3.915)
[66] Guo Q, Li Y, Chen Y, et al. β-Elemene induces apoptosis by activating the P53 pathway in human hypertrophic scar fibroblasts. IUBMB Life. 2022;74(6):508-518. doi:10.1002/iub.2614(IF:3.885)
[67] Jiang SJ, Xiao X, Zheng J, et al. Antibacterial and antibiofilm activities of novel antimicrobial peptide DP7 against the periodontal pathogen Porphyromonas gingivalis [published online ahead of print, 2022 May 14]. J Appl Microbiol. 2022;10.1111/jam.15614. doi:10.1111/jam.15614(IF:3.772)
[68] Zhang F, Teng Z, Wang L, Wang L, Huang T, Zhang X. Dietary Selenium Deficiency and Excess Accelerate Ubiquitin-Mediated Protein Degradation in the Muscle of Rainbow Trout (Oncorhynchus mykiss) via Akt/FoxO3a and NF-κB Signaling Pathways. Biol Trace Elem Res. 2022;200(3):1361-1375. doi:10.1007/s12011-021-02726-x(IF:3.738)
[69] YujiaLiu, Shi C, Zhang G, et al. Antimicrobial mechanism of 4-hydroxyphenylacetic acid on Listeria monocytogenes membrane and virulence. Biochem Biophys Res Commun. 2021;572:145-150. doi:10.1016/j.bbrc.2021.07.096(IF:3.575)
[70] Fu H, Zhang Z, Dai Y, Liu S, Fu E. Brequinar inhibits enterovirus replication by targeting biosynthesis pathway of pyrimidines. Am J Transl Res. 2020;12(12):8247-8255. Published 2020 Dec 25. (IF:3.375)
[71] Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered. 2022;13(1):1103-1114. doi:10.1080/21655979.2021.2017629(IF:3.269)
[72] Zhang Y, Zhang R, Lu L, et al. Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway. Bioengineered. 2022;13(4):8926-8936. doi:10.1080/21655979.2022.2056814(IF:3.269)
[73] Mei X, Din H, Zhao J, Tong J, Zhu W. Transcription factor Krüppel-like factor 5-regulated N-myc downstream-regulated gene 2 reduces IL-1β-induced chondrocyte inflammatory injury and extracellular matrix degradation. Bioengineered. 2021;12(1):7020-7032. doi:10.1080/21655979.2021.1971483(IF:3.269)
[74] Cao S, Li X, Feng T, et al. Hirudin promotes proliferation and osteogenic differentiation of HBMSCs via activation of cyclic guanosine monophosphate (cGMP)/protein kinase-G (PKG) signaling pathway. Bioengineered. 2022;13(3):6061-6069. doi:10.1080/21655979.2021.2008697(IF:3.269)
[75] Xu S, Zhou L, Guo S, et al. Different pituitary action of NK3Ra and NK3Rb in grass carp. Gen Comp Endocrinol. 2021;313:113829. doi:10.1016/j.ygcen.2021.113829(IF:2.822)
[76] Wang Y, Zhao S, Li G, Wang D, Jin Y. Neuroprotective Effect of HOTAIR Silencing on Isoflurane-Induced Cognitive Dysfunction via Sponging microRNA-129-5p and Inhibiting Neuroinflammation [published online ahead of print, 2022 Jan 13]. Neuroimmunomodulation. 2022;1-11. doi:10.1159/000521014(IF:2.492)
[77] Li J, Xu S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson's disease. Exp Ther Med. 2022;23(4):293. doi:10.3892/etm.2022.11223(IF:2.447)
[78] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[79] Qu D, Tan XH, Zhang KK, Wang Q, Wang HJ. ATF3 mRNA, but not BTG2, as a possible marker for vital reaction of skin contusion. Forensic Sci Int. 2019;303:109937. doi:10.1016/j.forsciint.2019.109937(IF:1.990)

高保真文库扩增预混液|High-Fidelity Mix for Library Amplification

高保真文库扩增预混液|High-Fidelity Mix for Library Amplification

产品说明书

FAQ

COA

已发表文献

2×Super Canace® High-Fidelity Mix for Library Amplification是即用型2×预混合溶液,包含High-Fidelity DNA Polymerase(保真度是普通pfu DNA聚合酶的6倍,扩增速度达15 sec/kb),dNTP以及针对高通量测序文库扩增而精心优化的缓冲体系,具有快速简便、灵敏度高、特异性强、稳定性好等优点。进行文库扩增反应时,体系只需加入引物和模板即可,简化了实验操作步骤,减少了人为误差,提高了实验通量和结果的重复性。此外,本产品还含有特异保护剂,使得预混液反复冻融后仍可维持稳定活性。

本产品已与Hieff NGS® Fast-Pace End Repair/dA-Tailing Module(Cat#12608),Hieff NGS® Fast-Pace DNA Ligation Module(Cat#12607)共同用于DNA文库构建,通过Illumina®高通量平台测序验证其有效性。本产品中提供的所有试剂组分均经过严格质检,最高程度保障产品优异性能与批次间稳定性。

 

产品应用

基因克隆;复杂DNA模板扩增;高通量建库扩增。

 

运输与保存方法

冰袋运输。

-20ºC保存。有效期18个月

 

注意事项

1. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
2. 本产品仅用作科研用途!

 

文库扩增反应体系(冰上配制)

1. 将表1中试剂解冻后颠倒混匀,置于冰上备用

2. 于无菌PCR管中配制表1所示反应体系。

1 PCR扩增反应体系

名称

体积(μL)

2×Super Canace®  High-Fidelity Mix

25

Primer 1

2.5

Primer 2

2.5

Adapter Ligated DNA

20

3. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。

4. 将PCR管置于PCR仪中,设置表2所示反应程序,进行PCR扩增

2 PCR扩增反应程序

温度

时间

循环数

98°C

1 min

1

98°C

10 sec

1~15(根据实验要求)

60°C

30 sec

72°C

30 sec

72°C

5 min

1

4°C

Hold

HB220615

 

高保真文库扩增预混液|High-Fidelity Mix for Library Amplification

暂无内容

[1] He L, Li J, Peng P, et al. Genomic analysis of a Chinese MDV strain derived from vaccine strain CVI988 through recombination. Infect Genet Evol. 2020;78:104045. doi:10.1016/j.meegid.2019.104045(IF:2.611)

2×Super Canace® High-Fidelity Mix for Library Amplification是即用型2×预混合溶液,包含High-Fidelity DNA Polymerase(保真度是普通pfu DNA聚合酶的6倍,扩增速度达15 sec/kb),dNTP以及针对高通量测序文库扩增而精心优化的缓冲体系,具有快速简便、灵敏度高、特异性强、稳定性好等优点。进行文库扩增反应时,体系只需加入引物和模板即可,简化了实验操作步骤,减少了人为误差,提高了实验通量和结果的重复性。此外,本产品还含有特异保护剂,使得预混液反复冻融后仍可维持稳定活性。

本产品已与Hieff NGS® Fast-Pace End Repair/dA-Tailing Module(Cat#12608),Hieff NGS® Fast-Pace DNA Ligation Module(Cat#12607)共同用于DNA文库构建,通过Illumina®高通量平台测序验证其有效性。本产品中提供的所有试剂组分均经过严格质检,最高程度保障产品优异性能与批次间稳定性。

 

产品应用

基因克隆;复杂DNA模板扩增;高通量建库扩增。

 

运输与保存方法

冰袋运输。

-20ºC保存。有效期18个月

 

注意事项

1. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
2. 本产品仅用作科研用途!

 

文库扩增反应体系(冰上配制)

1. 将表1中试剂解冻后颠倒混匀,置于冰上备用

2. 于无菌PCR管中配制表1所示反应体系。

1 PCR扩增反应体系

名称

体积(μL)

2×Super Canace®  High-Fidelity Mix

25

Primer 1

2.5

Primer 2

2.5

Adapter Ligated DNA

20

3. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。

4. 将PCR管置于PCR仪中,设置表2所示反应程序,进行PCR扩增

2 PCR扩增反应程序

温度

时间

循环数

98°C

1 min

1

98°C

10 sec

1~15(根据实验要求)

60°C

30 sec

72°C

30 sec

72°C

5 min

1

4°C

Hold

HB220615

 

高保真文库扩增预混液|High-Fidelity Mix for Library Amplification

暂无内容

[1] He L, Li J, Peng P, et al. Genomic analysis of a Chinese MDV strain derived from vaccine strain CVI988 through recombination. Infect Genet Evol. 2020;78:104045. doi:10.1016/j.meegid.2019.104045(IF:2.611)

逆转录预混液(含gDNA污染去除)|RT-gDNA digestion SuperMix for qPCR

逆转录预混液(含gDNA污染去除)|RT-gDNA digestion SuperMix for qPCR

产品说明书

FAQ

COA

已发表文献

Hifair® V one-step RT-gDNA digestion SuperMix for qPCRHifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)的升级版,可在同一管中进行逆转录和基因组去除两个反应,操作简便,可有效降低复杂加样过程造成的样品污染和RNA降解的风险。本产品中5×Hifair® One Step RT SuperMix含逆转录反应所需的全部试剂(Hifair® V Reverse Transcriptase, RNase Inhibitor, Oligo(dT)18 Primer, Random Primer, dNTPs, Buffer)反应时只需加入gDNA Remover Mix、模板RNA和水即可高效地合成第一链cDNA,同时去除基因组DNA污染。另外,本产品提供了5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

本产品中的Hifair® V Reverse Transcriptase可耐受高达60°C的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录逆转录产物兼容探针法与染料法qPCR,探针法与染料法qPCR Mix分别推荐翌圣Hieff Unicon® Universal TaqMan multiplex qPCR master mix (Cat#11211)Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix (Cat#11184),进行高性能基因表达分析。

 

产品组分

组分编号

组分名称

产品规格

11142ES10 (10 T)

11142ES60 (100 T)

11142-A

5×Hifair® One Step RT SuperMix

40 μL

400 μL

11142-B

gDNA Remover Mix

10 μL

100 μL

11142-C

5×Hifair® One Step No-RT Control SuperMix

20 μL

40 μL

11142-D

RNase free H2O

1 mL

2×1 mL

 

产品应用

后续适用于qPCR实验。

 

运输和保存方法

冰袋运输。-20°C保存,有效期12个月。

 

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3本产品仅作科研用途!

 

第一链cDNA合成操作步骤

1. 反应体系配置:在冰上融化11142-A/B/C组分,将试剂各组分充分震荡混匀,并在RNase-free离心管中配置如下体系:

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step RT SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

No-RT Control反应(可选)

5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step No-RT Control SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

 

2. 轻轻混匀,按照如下程序进行逆转录

温度

时间

30°C

5 min

55°C

15 min

85°C

5 min

【注】:1. 逆转录温度:推荐使用55°C。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60°C

  1. 逆转录产物可立即用于后续qPCR反应,也可-20°C短期保存,若需长期保存,建议分装后,于-80°C保存,避免反复冻融。

HB221019

Q: 反转录后的产物是什么?是双链的DNA吗?

A:反转录后的产物是RNA和cDNA的杂交链,并不是DNA双链,其稳定性相较于后者来说要低一些。

[1] Ji C, Li J, Jiang C, et al. Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice. J Adv Res. 2021;35:187-198. Published 2021 Apr 20. doi:10.1016/j.jare.2021.04.005(IF:10.479)

Hifair® V one-step RT-gDNA digestion SuperMix for qPCRHifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)的升级版,可在同一管中进行逆转录和基因组去除两个反应,操作简便,可有效降低复杂加样过程造成的样品污染和RNA降解的风险。本产品中5×Hifair® One Step RT SuperMix含逆转录反应所需的全部试剂(Hifair® V Reverse Transcriptase, RNase Inhibitor, Oligo(dT)18 Primer, Random Primer, dNTPs, Buffer)反应时只需加入gDNA Remover Mix、模板RNA和水即可高效地合成第一链cDNA,同时去除基因组DNA污染。另外,本产品提供了5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

本产品中的Hifair® V Reverse Transcriptase可耐受高达60°C的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录逆转录产物兼容探针法与染料法qPCR,探针法与染料法qPCR Mix分别推荐翌圣Hieff Unicon® Universal TaqMan multiplex qPCR master mix (Cat#11211)Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix (Cat#11184),进行高性能基因表达分析。

 

产品组分

组分编号

组分名称

产品规格

11142ES10 (10 T)

11142ES60 (100 T)

11142-A

5×Hifair® One Step RT SuperMix

40 μL

400 μL

11142-B

gDNA Remover Mix

10 μL

100 μL

11142-C

5×Hifair® One Step No-RT Control SuperMix

20 μL

40 μL

11142-D

RNase free H2O

1 mL

2×1 mL

 

产品应用

后续适用于qPCR实验。

 

运输和保存方法

冰袋运输。-20°C保存,有效期12个月。

 

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3本产品仅作科研用途!

 

第一链cDNA合成操作步骤

1. 反应体系配置:在冰上融化11142-A/B/C组分,将试剂各组分充分震荡混匀,并在RNase-free离心管中配置如下体系:

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step RT SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

No-RT Control反应(可选)

5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step No-RT Control SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

 

2. 轻轻混匀,按照如下程序进行逆转录

温度

时间

30°C

5 min

55°C

15 min

85°C

5 min

【注】:1. 逆转录温度:推荐使用55°C。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60°C

  1. 逆转录产物可立即用于后续qPCR反应,也可-20°C短期保存,若需长期保存,建议分装后,于-80°C保存,避免反复冻融。

HB221019

Q: 反转录后的产物是什么?是双链的DNA吗?

A:反转录后的产物是RNA和cDNA的杂交链,并不是DNA双链,其稳定性相较于后者来说要低一些。

[1] Ji C, Li J, Jiang C, et al. Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice. J Adv Res. 2021;35:187-198. Published 2021 Apr 20. doi:10.1016/j.jare.2021.04.005(IF:10.479)

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix

产品说明书

FAQ

COA

已发表文献

2×Hieff Unicon® TaqMan SNP Genotyping Master Mix是一款采用公司新一代抗体法热启动Taq酶的荧光定量TaqMan SNP分型预混液。本产品含有基因改造的热启动Taq酶,极大地提高了扩增灵敏度和特异性,促进低浓度模板的有效扩增。本产品可用于基因分型和基因多重定量分析。

运输与保存方式

冰袋运输。-20 ℃避光保存,有效期2年。

反应体系

组分

体积(μL

终浓度

2×Hieff Unicon® TaqMan SNP Genotyping Master Mix

10

Primer mix (10 μM)

x

0.1 μM-0.5 μM

Probe mix (10 μM)

x

50 nM-250 nM

模板 DNA/cDNA

1-100 ng

ddH2O

up to 20

【注】
1)上表中模板量和引物浓度以及探针浓度均为推荐量,可根据具体实验情况进行调整,选择最适投入量和浓度;

 2)2×Hieff Unicon® TaqMan SNP Genotyping Master Mix内含Low ROX,适用机型: ABI 7500, 7500 Fast, ViiA™7, QuantStudio™ 3 and 5, QuantStudio™ 6,7,12k Flex,Stratagene MX3000P™, MX3005P™, MX4000P™。

参考扩增程序

循环步骤

温度 (℃)

时间

循环数

预变性

95 ℃

5 min

1

变性

95 ℃

10 sec

45

退火/延伸

60 ℃

30 sec

【注】退火/延伸温度可根据实验要求适当调整。

注意事项

1)为了您的安全和健康,请穿实验服并带实验手套进行操作。
2)本产品仅作科研用途!

 

相关产品

产品名称

货号

规格

Hieff UNICON® HotStart Direct Taq DNA Polymerase,热启动直扩用抗体修饰突变体Taq酶

10717ES72

250 U

Hieff® Double-Block anti-Taq DNA Polymerase Antibody Taq酶单克隆抗体

31303ES60

100 μg

Uracil DNA Glycosylase (UDG), heat-labile 热敏UDG

10303ES60

100 U

10303ES76

500 U

dUTP, 100mM Solution 脱氧尿苷三磷酸溶液(100 mM)

10128ES72

250 μL

10128ES80

1 mL

COVID-19-pseudovirus(2019-nCOV假病毒)

11900ES03

1 mL

SARS-pseudovirus(SARS假病毒)

11903ES70

1 mL

MERS-pseudovirus(MERS假病毒)

11904ES70

1 mL

 

HB201021

 

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master MixQ:PCR Mix 有没有 3 -5 的外切酶活性?PCR Mix 扩增产物类型?

A:没有 3 -5 的外切酶活性,产物带有 3 -A。可用于 TA 克隆。

Q:PCR Mix 中的酶对应哪个产品?

A:Taq DNA 聚合酶,10101ES。

Q:PCR Mix 校正因子校正的是Taq 酶吗?是什么成分?延长因子是什么?

A:校正因子校正的是错配碱基,它是一类具有校正活性的酶,延伸因子是帮助合成长片段的,是一个辅助蛋白。

Q:1ml PCR Mix 含有多少个酶单位?

A:50 U。

Q:PCR Mix 是否含 SDS 和溴酚蓝?

A:不含SDS,含溴酚蓝。

Q:PCR Mix 稳定性如何?

A:推荐-20℃保存,稳定性结果:室温(23℃左右),可放置一周。4℃,可保存 3 个月。

Q:PCR Mix 扩增长度?

A:小于 6kb。

Q:PCR Mix 可以用于 XX 模板吗?酵母菌液呢?

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master MixA:特殊的如酵母菌液,病毒等不推荐,但可送试用装给客户尝试。实验室验证过简单模板,如 DNA,

质粒DNA,复杂模板,如拟南芥gDNA,人gDNA。

Q:PCR Mix 扩增完成后,可以直接做酶切吗?可以直接过柱纯化吗?可以胶回收纯化吗?

A:a)不建议直接做酶切,某些组分可能会影响酶切效果。

b)不建议直接过柱纯化,某些组分可能会影响回收效果。

c)可以进行胶回收纯化。

Q:PCR Mix 可以用于 PAGE 电泳吗?

A:不建议用,PCR Mix 中含有影响PAGE 胶电泳的组分。可推荐单独的taq 酶。

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master MixQ:PCR mix 体系可以用 25 L 体系吗?

A:可以。各组分等体积缩小即可。

Q:PCR Mix 能扩 RNA 吧?

A:不能。

Q:扩增完送测序,应选有染料的还是无染料?

A:都可以,PCR 产物测序,测序公司会先进行纯化。

 

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix

暂无内容

2×Hieff Unicon® TaqMan SNP Genotyping Master Mix是一款采用公司新一代抗体法热启动Taq酶的荧光定量TaqMan SNP分型预混液。本产品含有基因改造的热启动Taq酶,极大地提高了扩增灵敏度和特异性,促进低浓度模板的有效扩增。本产品可用于基因分型和基因多重定量分析。

运输与保存方式

冰袋运输。-20 ℃避光保存,有效期2年。

反应体系

组分

体积(μL

终浓度

2×Hieff Unicon® TaqMan SNP Genotyping Master Mix

10

Primer mix (10 μM)

x

0.1 μM-0.5 μM

Probe mix (10 μM)

x

50 nM-250 nM

模板 DNA/cDNA

1-100 ng

ddH2O

up to 20

【注】
1)上表中模板量和引物浓度以及探针浓度均为推荐量,可根据具体实验情况进行调整,选择最适投入量和浓度;

 2)2×Hieff Unicon® TaqMan SNP Genotyping Master Mix内含Low ROX,适用机型: ABI 7500, 7500 Fast, ViiA™7, QuantStudio™ 3 and 5, QuantStudio™ 6,7,12k Flex,Stratagene MX3000P™, MX3005P™, MX4000P™。

参考扩增程序

循环步骤

温度 (℃)

时间

循环数

预变性

95 ℃

5 min

1

变性

95 ℃

10 sec

45

退火/延伸

60 ℃

30 sec

【注】退火/延伸温度可根据实验要求适当调整。

注意事项

1)为了您的安全和健康,请穿实验服并带实验手套进行操作。
2)本产品仅作科研用途!

 

相关产品

产品名称

货号

规格

Hieff UNICON® HotStart Direct Taq DNA Polymerase,热启动直扩用抗体修饰突变体Taq酶

10717ES72

250 U

Hieff® Double-Block anti-Taq DNA Polymerase Antibody Taq酶单克隆抗体

31303ES60

100 μg

Uracil DNA Glycosylase (UDG), heat-labile 热敏UDG

10303ES60

100 U

10303ES76

500 U

dUTP, 100mM Solution 脱氧尿苷三磷酸溶液(100 mM)

10128ES72

250 μL

10128ES80

1 mL

COVID-19-pseudovirus(2019-nCOV假病毒)

11900ES03

1 mL

SARS-pseudovirus(SARS假病毒)

11903ES70

1 mL

MERS-pseudovirus(MERS假病毒)

11904ES70

1 mL

 

HB201021

 

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master MixQ:PCR Mix 有没有 3 -5 的外切酶活性?PCR Mix 扩增产物类型?

A:没有 3 -5 的外切酶活性,产物带有 3 -A。可用于 TA 克隆。

Q:PCR Mix 中的酶对应哪个产品?

A:Taq DNA 聚合酶,10101ES。

Q:PCR Mix 校正因子校正的是Taq 酶吗?是什么成分?延长因子是什么?

A:校正因子校正的是错配碱基,它是一类具有校正活性的酶,延伸因子是帮助合成长片段的,是一个辅助蛋白。

Q:1ml PCR Mix 含有多少个酶单位?

A:50 U。

Q:PCR Mix 是否含 SDS 和溴酚蓝?

A:不含SDS,含溴酚蓝。

Q:PCR Mix 稳定性如何?

A:推荐-20℃保存,稳定性结果:室温(23℃左右),可放置一周。4℃,可保存 3 个月。

Q:PCR Mix 扩增长度?

A:小于 6kb。

Q:PCR Mix 可以用于 XX 模板吗?酵母菌液呢?

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master MixA:特殊的如酵母菌液,病毒等不推荐,但可送试用装给客户尝试。实验室验证过简单模板,如 DNA,

质粒DNA,复杂模板,如拟南芥gDNA,人gDNA。

Q:PCR Mix 扩增完成后,可以直接做酶切吗?可以直接过柱纯化吗?可以胶回收纯化吗?

A:a)不建议直接做酶切,某些组分可能会影响酶切效果。

b)不建议直接过柱纯化,某些组分可能会影响回收效果。

c)可以进行胶回收纯化。

Q:PCR Mix 可以用于 PAGE 电泳吗?

A:不建议用,PCR Mix 中含有影响PAGE 胶电泳的组分。可推荐单独的taq 酶。

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master MixQ:PCR mix 体系可以用 25 L 体系吗?

A:可以。各组分等体积缩小即可。

Q:PCR Mix 能扩 RNA 吧?

A:不能。

Q:扩增完送测序,应选有染料的还是无染料?

A:都可以,PCR 产物测序,测序公司会先进行纯化。

 

荧光定量TaqMan SNP分型预混液|TaqMan SNP Genotyping Master Mix

暂无内容

2×实时荧光定量PCR扩增预混液|qPCR SYBR Green Master Mix(Rox Provided Seperately)

2×实时荧光定量PCR扩增预混液|qPCR SYBR Green Master Mix(Rox Provided Seperately)

产品说明书

FAQ

COA

已发表文献

产品描述

Hieff® qPCR SYBR Green Master Mix2×实时定量PCR扩增的预混合溶液Mix中含有热启动Hieff® DNA PolymeraseSYBR Green IdNTPs、Mg2+使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率本产品针对不同型号的实时荧光定量PCR仪,分别提供不同浓度的 Rox 参比液(High Rox/Low Rox),用于校正孔与孔之间的荧光信号误差。

本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。

 

产品组分

组分编号

组分名称

产品编号/规格

11204ES03

1 mL)

11204ES08

(5×1 mL)

11204ES50

(50×1 mL)

11204ES60

100×1 mL)

11204-A

Hieff® qPCR SYBR Green Master Mix

1 mL

5 ×1 mL

50 ×1 mL

100 ×1 mL

11204-B

50×Low Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

11204-C

50×High Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

 

运输与保存方式

冰袋运输。-20避光储存,有效期18个月

本品避免反复冻融产品中含有荧光染料SYBR® Green I,保存或配制反应体系时需避免强光照射。

 

注意事项

1. 推荐使用本公司cDNA合成试剂盒(货号11123ES),以有效去除RNA样品中残留的基因组。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

3. 本产品仅作科研用途!

 

反应体系(推荐冰上配制)

组分

体积(μL)

体积(μL)

终浓度

Hieff® qPCR SYBR Green Master Mix

25

10

Forward Primer (10 μM)

1

0.4

0.2 μM

Reverse Primer (10 μM)

1

0.4

0.2 μM

50×High or Low Rox

1

0.4

模板DNA

X

X

无菌超纯水

to 50

to 20

【注】 使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 参比染料Rox的添加,可根据不同仪器型号进行选择,具体可参考【适用机型】。

b) 引物浓度:通常引物终浓度为0.2 μM,也可以根据情况0.1-1.0 μM之间进行调整。

c) 模板浓度:如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10

d) 模板稀释cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。

e) 反应体系推荐使用20 μL或50 μL以保证目的基因扩增的有效性和重复性。

f) 体系配制请于超净工作台内配制,使用无核酸酶残留的枪头、反应管推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染

 

扩增程序

三步法程序                                                                                                 两步法程序

循环步骤

温度

时间

循环数

 

循环步骤

温度

时间

循环数

预变性

95

5 min

1

 

预变性

95

5 min

1

变性

95

10 sec

40

 

变性

95

10 sec

 

退火

55-60

20 sec

 

退火、延伸

60

30 sec

40

延伸

72

20 sec

         

熔解曲线

  仪器默认设置

1

 

熔解曲线

仪器默认设置

1

【注】:高特异性可选择两步法高效率扩增可选择三步法

a) 预变性时间:根据不同模板和引物的具体情况可适当缩短至2 min。

b) 退火温度和时间:请根据引物和目的基因的长度进行调整。

c) 荧光信号采集():请参考仪器说明书设置。 

d) 解曲线通常情况下可以使用仪器默认程序。

 

结果分析

定量实验至少需要三个生物学重复反应结束后需要确认扩增曲线及解曲线。

1) 扩增曲线标准扩增曲线为S型。

Ct值落在20-30之间时,定量分析最准确

Ct值小于10需要将稀释模板后,重新进行验;

Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;

Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。

2) 熔解曲线:

熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若解曲线出现双峰或者多峰,则不能进行定量分析。

熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。

如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。

如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。

 

引物设计指南

1)推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。

2)正向引物和反向引物的Tm值相差不宜超过2引物Tm值60ºC-65ºC为佳。

3)引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C

4)引物内部或者正反两条引物间最好避免出现3个碱基以上的互补序列

5)引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补

6)设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析

 

适用机型

High Rox适用机型 ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus;

Low Rox 适用机型: ABI 7500, 7500 Fast, ViiA7, QuantStudio 3 and 5, QuantStudio6,7,12k Flex; Stratagene MX3000P, MX3005P, MX4000P;  

不需要Rox校正的仪器型号:

Bio-Rad CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf Mastercycler ep realplex, realplex 2 s; Qiagen Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science LightCycler 480, LightCycler 2.0; Lightcycler 96; Thermo Scientific PikoReal Cycler;

Cepheid SmartCycler; Illumina Eco qPCR. 

 

相关产品

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit HOT

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit  (gDNA digester plus)

11121ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)HOT

11123ES60

100 T

Hieff® qPCR SYBR Green Master Mix (No Rox )HOT

11201ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (Low Rox Plus)HOT

11202ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (High Rox Plus)HOT

11203ES08

5 mL

 

HB220113

Q模板用量X 是多少?常用的量是多少?

A:a)X 表示模板 DNA 量需要实验者在首次实验时进行摸索。首先对模板DNA 进行稀释(一般推荐 5-10 倍),然后模板量梯度上样,选择 CT 值落在  20-30  之间的最佳上样量。

b)常用的量是逆转录 500-1000ng 总RNA,稀释 10 倍取 1μL cDNA 进行qPCR 实验。

QqPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:a)有效性要满足三个条件:

1)标准曲线:扩增效率范围:90-110%,对应斜率为-3–3.5。R2>0.98。 (扩增效率=10-1/斜率-1),当斜率=-3.32 时,扩增效率=100%。

2)扩增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无Ct 值。

(3) 熔解曲线:为单一峰。

b)3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

QRox 的作用?

A:ROX 是一种参比染料,其作用是标准化荧光定量反应中的非PCR 震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。

Q为什么扩增曲线不稳定(扩增曲线平台期锯齿状)?

A:可能原因:

a)RNA 纯度低,体系中存在较多杂质;推荐参数:OD260/OD280=1.8-2.0, OD260/OD230>2.0。随着 qPCR 反应的进行,阻碍反应的因素不断增加,若 RNA 纯度低,杂质多,会进一步影响仪器平台期的算法,导致出现锯齿状。

b)仪器长时间未做校准。仪器未校准会使仪器算法错误,导致各种异常结果。

解决方案:

a)先梯度加大模板稀释倍数看优化效果。若效果仍不好建议新制备高纯度RNA 重新实验。b)定期(一般 1 年)进行仪器校准保养。

Q为什么扩增曲线无法达到平台期?

A:可能原因:

a)模板量太低(CT 值 35 左右)。推荐 Ct 值:15<Ct<30。原因:Ct 值太大(如  Ct>30),刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

b)循环次数太少(30 cycles);循环次数过少(如 35)导致刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

c)试剂扩增效率低(CT 小,但无法达到平台期,曲线比较“趴”)。

解决方案:

a)提高模板量;参考 Q1 的优化方法。

b)提高循环次数;推荐循环数:一般 40。低丰度基因可设 45。

c)做标准曲线测定扩增效率,若确实偏低,则换试剂。

d)增加 Mg2+浓度(会增加非特异扩增)

Q为什么出现双峰,并且较低峰 Tm 在 80℃之前?

A:较低峰 Tm 在 80℃之前可能原因:存在引物二聚体(一般mRNA 反转录后定量,产物在 100-150bp 左右,峰对应 Tm 值为 80-90℃。若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值在 70-80℃之间。故会在 80℃以前出现一个峰, 80℃以后出现一个峰),模板浓度过低或引物浓度过高。

解决方案:

a)适当提高退火温度; b)提高模板量,降低引物浓度; c)重新设计引物。

Q为什么出现双峰,双峰 Tm 都在 80℃以前?

A:双峰Tm 都在 80℃以前的可能原因:做 MicroRNA 定量时存在引物二聚体。Micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十 bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃ 以前出现双峰。

优化方法:提高退火温度、降低引物浓度或重新设计引物等方式优化。

Q为什么出现双峰,并且双峰Tm 都在 80℃以后?

A:可能原因:

a)引物特异性过差导致非特异性产物扩增。

b)交叉污染。

c)gDNA 污染,可通过 NRC 进行确认。

解决方案:

a)Blast 检查引物特异性,差则重新设计引物。

b)超净台中操作,注意更换 Tip 头,避免交叉污染。

c)通过 NRC 阴性对照进行确认,若有,需重新制备模板。

Q为什么是单峰,但 Tm 在 80℃之前?

A:可能原因:

扩增产物是完全的引物二聚体,可能是未加模板。

注:若 microRNA,则结果正常(做 microRNA 定量时存在引物二聚体。micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应 Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃以前出现双峰)。

解决方案:

进行高分辨率琼脂糖电泳,检测有无目的条带,以确定模板是否加入。优化方法:新配制无误的反应体系,重新实验。

Q为什么是单峰,但峰不尖锐?

A:可能原因:

存在大小相近的非特异性扩增

解决方案:a)温度跨度不高于 7℃,视为可用结果(即 Tm 值跨度<7℃可认为是同一种产物);

b)进行高浓度琼脂糖电泳(高分辨率),确认是否为单一条带。

1. Lu, XY., Shi, XJ., Hu, A. et al. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature (2020). IF43

2. Han X., et al., Mapping the Mouse Cell Atlas by Microwell-Seq[J]. Cell. 2018 Feb 22;172(5):1091-1107.e17. IF 30.410

3. Wang X, Ni L, Wan S, et al. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells[J]. Immunity, 2020, 52(2): 328-341. e5. IF21.522

4. Xiao J, Li W, Zheng X, et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection[J]. Immunity, 2020, 52(1): 109-122. e6.IF21.522

5. Han F, Liu X, Chen C, et al. Hypercholesterolemia risk-associated GPR146 is an orphan G-protein coupled receptor that regulates blood cholesterol levels in humans and mice[J]. Cell Research, 2020, 30(4): 363-365.IF20.5

6. Mo J, Chen Z, Qin S, et al. TRADES: Targeted RNA Demethylation by SunTag System[J]. Advanced Science, 2020, 7(19): 2001402.IF15.8

7. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

8. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244. IF 12.353

9. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

10. Wang Y, Xiao Y, Dong S, et al. Antibody-free enzyme-assisted chemical approach for detection of N 6-methyladenosine[J]. Nature Chemical Biology, 2020: 1-8.(IF12.154)

11. Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress[J]. Nucleic acids research, 2019.IF11.6

12. Su G, Guo D, Chen J, et al. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs differentiation[J]. Nucleic acids research, 2019.IF11.6

13. Feng Y, Wang Y, Wang X, et al. Simultaneous Epigenetic Perturbation and Genome Imaging Reveal Distinct Roles of H3K9me3 in Chromatin Architecture and Transcription[J]. bioRxiv, 2020.IF10.806 

14. Huang X, He M, Huang S, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription[J]. Molecular cancer, 2019, 18(1): 166.IF10.679

15. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2020, 231: 119654.(IF10.317)

16. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2019: 119654.IF10.273

17. Yafen Wang, Xiong Zhang, et al. Bisulfite-free, single base-resolution analysis of 5-hydroxymethylcytosine in genomic DNA by chemical-mediated mismatch[J]. Chem. Sci., 2019, Advance Article. IF 9.063

18. Wang Y, et al., Gene specific-loci quantitative and single-base resolution analysis of 5-formylcytosine by compound-mediated polymerase chain reaction[J]. Chem Sci. 2018 Mar 19;9(15):3723-3728. IF 8.668

19. Liu, C., et al., Enrichment and fluorogenic labelling of 5-formyluracil in DNA[J]. Chemical Science, 2017. 8: p.4505-4510.IF 8.668

20. Xiong Z, Yuan C. Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress[J]. Theranostics, 2020, 10(25): 11444.(IF8.579)

产品描述

Hieff® qPCR SYBR Green Master Mix2×实时定量PCR扩增的预混合溶液Mix中含有热启动Hieff® DNA PolymeraseSYBR Green IdNTPs、Mg2+使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率本产品针对不同型号的实时荧光定量PCR仪,分别提供不同浓度的 Rox 参比液(High Rox/Low Rox),用于校正孔与孔之间的荧光信号误差。

本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。

 

产品组分

组分编号

组分名称

产品编号/规格

11204ES03

1 mL)

11204ES08

(5×1 mL)

11204ES50

(50×1 mL)

11204ES60

100×1 mL)

11204-A

Hieff® qPCR SYBR Green Master Mix

1 mL

5 ×1 mL

50 ×1 mL

100 ×1 mL

11204-B

50×Low Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

11204-C

50×High Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

 

运输与保存方式

冰袋运输。-20避光储存,有效期18个月

本品避免反复冻融产品中含有荧光染料SYBR® Green I,保存或配制反应体系时需避免强光照射。

 

注意事项

1. 推荐使用本公司cDNA合成试剂盒(货号11123ES),以有效去除RNA样品中残留的基因组。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

3. 本产品仅作科研用途!

 

反应体系(推荐冰上配制)

组分

体积(μL)

体积(μL)

终浓度

Hieff® qPCR SYBR Green Master Mix

25

10

Forward Primer (10 μM)

1

0.4

0.2 μM

Reverse Primer (10 μM)

1

0.4

0.2 μM

50×High or Low Rox

1

0.4

模板DNA

X

X

无菌超纯水

to 50

to 20

【注】 使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 参比染料Rox的添加,可根据不同仪器型号进行选择,具体可参考【适用机型】。

b) 引物浓度:通常引物终浓度为0.2 μM,也可以根据情况0.1-1.0 μM之间进行调整。

c) 模板浓度:如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10

d) 模板稀释cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。

e) 反应体系推荐使用20 μL或50 μL以保证目的基因扩增的有效性和重复性。

f) 体系配制请于超净工作台内配制,使用无核酸酶残留的枪头、反应管推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染

 

扩增程序

三步法程序                                                                                                 两步法程序

循环步骤

温度

时间

循环数

 

循环步骤

温度

时间

循环数

预变性

95

5 min

1

 

预变性

95

5 min

1

变性

95

10 sec

40

 

变性

95

10 sec

 

退火

55-60

20 sec

 

退火、延伸

60

30 sec

40

延伸

72

20 sec

         

熔解曲线

  仪器默认设置

1

 

熔解曲线

仪器默认设置

1

【注】:高特异性可选择两步法高效率扩增可选择三步法

a) 预变性时间:根据不同模板和引物的具体情况可适当缩短至2 min。

b) 退火温度和时间:请根据引物和目的基因的长度进行调整。

c) 荧光信号采集():请参考仪器说明书设置。 

d) 解曲线通常情况下可以使用仪器默认程序。

 

结果分析

定量实验至少需要三个生物学重复反应结束后需要确认扩增曲线及解曲线。

1) 扩增曲线标准扩增曲线为S型。

Ct值落在20-30之间时,定量分析最准确

Ct值小于10需要将稀释模板后,重新进行验;

Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;

Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。

2) 熔解曲线:

熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若解曲线出现双峰或者多峰,则不能进行定量分析。

熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。

如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。

如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。

 

引物设计指南

1)推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。

2)正向引物和反向引物的Tm值相差不宜超过2引物Tm值60ºC-65ºC为佳。

3)引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C

4)引物内部或者正反两条引物间最好避免出现3个碱基以上的互补序列

5)引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补

6)设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析

 

适用机型

High Rox适用机型 ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus;

Low Rox 适用机型: ABI 7500, 7500 Fast, ViiA7, QuantStudio 3 and 5, QuantStudio6,7,12k Flex; Stratagene MX3000P, MX3005P, MX4000P;  

不需要Rox校正的仪器型号:

Bio-Rad CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf Mastercycler ep realplex, realplex 2 s; Qiagen Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science LightCycler 480, LightCycler 2.0; Lightcycler 96; Thermo Scientific PikoReal Cycler;

Cepheid SmartCycler; Illumina Eco qPCR. 

 

相关产品

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit HOT

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit  (gDNA digester plus)

11121ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)HOT

11123ES60

100 T

Hieff® qPCR SYBR Green Master Mix (No Rox )HOT

11201ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (Low Rox Plus)HOT

11202ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (High Rox Plus)HOT

11203ES08

5 mL

 

HB220113

Q模板用量X 是多少?常用的量是多少?

A:a)X 表示模板 DNA 量需要实验者在首次实验时进行摸索。首先对模板DNA 进行稀释(一般推荐 5-10 倍),然后模板量梯度上样,选择 CT 值落在  20-30  之间的最佳上样量。

b)常用的量是逆转录 500-1000ng 总RNA,稀释 10 倍取 1μL cDNA 进行qPCR 实验。

QqPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:a)有效性要满足三个条件:

1)标准曲线:扩增效率范围:90-110%,对应斜率为-3–3.5。R2>0.98。 (扩增效率=10-1/斜率-1),当斜率=-3.32 时,扩增效率=100%。

2)扩增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无Ct 值。

(3) 熔解曲线:为单一峰。

b)3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

QRox 的作用?

A:ROX 是一种参比染料,其作用是标准化荧光定量反应中的非PCR 震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。

Q为什么扩增曲线不稳定(扩增曲线平台期锯齿状)?

A:可能原因:

a)RNA 纯度低,体系中存在较多杂质;推荐参数:OD260/OD280=1.8-2.0, OD260/OD230>2.0。随着 qPCR 反应的进行,阻碍反应的因素不断增加,若 RNA 纯度低,杂质多,会进一步影响仪器平台期的算法,导致出现锯齿状。

b)仪器长时间未做校准。仪器未校准会使仪器算法错误,导致各种异常结果。

解决方案:

a)先梯度加大模板稀释倍数看优化效果。若效果仍不好建议新制备高纯度RNA 重新实验。b)定期(一般 1 年)进行仪器校准保养。

Q为什么扩增曲线无法达到平台期?

A:可能原因:

a)模板量太低(CT 值 35 左右)。推荐 Ct 值:15<Ct<30。原因:Ct 值太大(如  Ct>30),刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

b)循环次数太少(30 cycles);循环次数过少(如 35)导致刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

c)试剂扩增效率低(CT 小,但无法达到平台期,曲线比较“趴”)。

解决方案:

a)提高模板量;参考 Q1 的优化方法。

b)提高循环次数;推荐循环数:一般 40。低丰度基因可设 45。

c)做标准曲线测定扩增效率,若确实偏低,则换试剂。

d)增加 Mg2+浓度(会增加非特异扩增)

Q为什么出现双峰,并且较低峰 Tm 在 80℃之前?

A:较低峰 Tm 在 80℃之前可能原因:存在引物二聚体(一般mRNA 反转录后定量,产物在 100-150bp 左右,峰对应 Tm 值为 80-90℃。若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值在 70-80℃之间。故会在 80℃以前出现一个峰, 80℃以后出现一个峰),模板浓度过低或引物浓度过高。

解决方案:

a)适当提高退火温度; b)提高模板量,降低引物浓度; c)重新设计引物。

Q为什么出现双峰,双峰 Tm 都在 80℃以前?

A:双峰Tm 都在 80℃以前的可能原因:做 MicroRNA 定量时存在引物二聚体。Micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十 bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃ 以前出现双峰。

优化方法:提高退火温度、降低引物浓度或重新设计引物等方式优化。

Q为什么出现双峰,并且双峰Tm 都在 80℃以后?

A:可能原因:

a)引物特异性过差导致非特异性产物扩增。

b)交叉污染。

c)gDNA 污染,可通过 NRC 进行确认。

解决方案:

a)Blast 检查引物特异性,差则重新设计引物。

b)超净台中操作,注意更换 Tip 头,避免交叉污染。

c)通过 NRC 阴性对照进行确认,若有,需重新制备模板。

Q为什么是单峰,但 Tm 在 80℃之前?

A:可能原因:

扩增产物是完全的引物二聚体,可能是未加模板。

注:若 microRNA,则结果正常(做 microRNA 定量时存在引物二聚体。micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应 Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃以前出现双峰)。

解决方案:

进行高分辨率琼脂糖电泳,检测有无目的条带,以确定模板是否加入。优化方法:新配制无误的反应体系,重新实验。

Q为什么是单峰,但峰不尖锐?

A:可能原因:

存在大小相近的非特异性扩增

解决方案:a)温度跨度不高于 7℃,视为可用结果(即 Tm 值跨度<7℃可认为是同一种产物);

b)进行高浓度琼脂糖电泳(高分辨率),确认是否为单一条带。

1. Lu, XY., Shi, XJ., Hu, A. et al. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature (2020). IF43

2. Han X., et al., Mapping the Mouse Cell Atlas by Microwell-Seq[J]. Cell. 2018 Feb 22;172(5):1091-1107.e17. IF 30.410

3. Wang X, Ni L, Wan S, et al. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells[J]. Immunity, 2020, 52(2): 328-341. e5. IF21.522

4. Xiao J, Li W, Zheng X, et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection[J]. Immunity, 2020, 52(1): 109-122. e6.IF21.522

5. Han F, Liu X, Chen C, et al. Hypercholesterolemia risk-associated GPR146 is an orphan G-protein coupled receptor that regulates blood cholesterol levels in humans and mice[J]. Cell Research, 2020, 30(4): 363-365.IF20.5

6. Mo J, Chen Z, Qin S, et al. TRADES: Targeted RNA Demethylation by SunTag System[J]. Advanced Science, 2020, 7(19): 2001402.IF15.8

7. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

8. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244. IF 12.353

9. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

10. Wang Y, Xiao Y, Dong S, et al. Antibody-free enzyme-assisted chemical approach for detection of N 6-methyladenosine[J]. Nature Chemical Biology, 2020: 1-8.(IF12.154)

11. Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress[J]. Nucleic acids research, 2019.IF11.6

12. Su G, Guo D, Chen J, et al. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs differentiation[J]. Nucleic acids research, 2019.IF11.6

13. Feng Y, Wang Y, Wang X, et al. Simultaneous Epigenetic Perturbation and Genome Imaging Reveal Distinct Roles of H3K9me3 in Chromatin Architecture and Transcription[J]. bioRxiv, 2020.IF10.806 

14. Huang X, He M, Huang S, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription[J]. Molecular cancer, 2019, 18(1): 166.IF10.679

15. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2020, 231: 119654.(IF10.317)

16. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2019: 119654.IF10.273

17. Yafen Wang, Xiong Zhang, et al. Bisulfite-free, single base-resolution analysis of 5-hydroxymethylcytosine in genomic DNA by chemical-mediated mismatch[J]. Chem. Sci., 2019, Advance Article. IF 9.063

18. Wang Y, et al., Gene specific-loci quantitative and single-base resolution analysis of 5-formylcytosine by compound-mediated polymerase chain reaction[J]. Chem Sci. 2018 Mar 19;9(15):3723-3728. IF 8.668

19. Liu, C., et al., Enrichment and fluorogenic labelling of 5-formyluracil in DNA[J]. Chemical Science, 2017. 8: p.4505-4510.IF 8.668

20. Xiong Z, Yuan C. Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress[J]. Theranostics, 2020, 10(25): 11444.(IF8.579)