[1] Chen H, Zhou M, Zeng Y, et al. Biomimetic Lipopolysaccharide-Free Bacterial Outer Membrane-Functionalized Nanoparticles for Brain-Targeted Drug Delivery. Adv Sci (Weinh). 2022;9(16):e2105854. doi:10.1002/advs.202105854(IF:16.806)
[2] Zhai Q, Chen X, Fei D, et al. Nanorepairers Rescue Inflammation-Induced Mitochondrial Dysfunction in Mesenchymal Stem Cells. Adv Sci (Weinh). 2022;9(4):e2103839. doi:10.1002/advs.202103839(IF:16.806)
[3] Yao J, Wang J, Xu Y, et al. CDK9 inhibition blocks the initiation of PINK1-PRKN-mediated mitophagy by regulating the SIRT1-FOXO3-BNIP3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma [published online ahead of print, 2021 Dec 10]. Autophagy. 2021;1-19. doi:10.1080/15548627.2021.2007027(IF:16.016)
[4] Lv Y, Xu C, Zhao X, et al. Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells. ACS Nano. 2018;12(2):1519-1536. doi:10.1021/acsnano.7b08051(IF:15.881)
[5] Sun H, Zhong Y, Zhu X, et al. A Tauopathy-Homing and Autophagy-Activating Nanoassembly for Specific Clearance of Pathogenic Tau in Alzheimer's Disease. ACS Nano. 2021;15(3):5263-5275. doi:10.1021/acsnano.0c10690(IF:15.881)
[6] Zhao LP, Zheng RR, Huang JQ, et al. Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy [published online ahead of print, 2020 Nov 25]. ACS Nano. 2020;10.1021/acsnano.0c06765. doi:10.1021/acsnano.0c06765(IF:14.588)
[7] Liu T, Liu W, Zhang M, et al. Ferrous-Supply-Regeneration Nanoengineering for Cancer-Cell-Specific Ferroptosis in Combination with Imaging-Guided Photodynamic Therapy. ACS Nano. 2018;12(12):12181-12192. doi:10.1021/acsnano.8b05860(IF:13.709)
[8] Huang JQ, Zhao LP, Zhou X, et al. Carrier Free O2 -Economizer for Photodynamic Therapy Against Hypoxic Tumor by Inhibiting Cell Respiration. Small. 2022;18(15):e2107467. doi:10.1002/smll.202107467(IF:13.281)
[9] Ma M, Chen Y, Zhao M, et al. Hierarchical responsive micelle facilitates intratumoral penetration by acid-activated positive charge surface and size contraction. Biomaterials. 2021;271:120741. doi:10.1016/j.biomaterials.2021.120741(IF:12.479)
[10] Liu Y, Huo Y, Yao L, et al. Transcytosis of Nanomedicine for Tumor Penetration. Nano Lett. 2019;19(11):8010-8020. doi:10.1021/acs.nanolett.9b03211(IF:12.279)
[11] Hou D, Hu F, Mao Y, et al. Cationic antimicrobial peptide NRC-03 induces oral squamous cell carcinoma cell apoptosis via CypD-mPTP axis-mediated mitochondrial oxidative stress. Redox Biol. 2022;54:102355. doi:10.1016/j.redox.2022.102355(IF:11.799)
[12] Chen X, Li C, Cao X, et al. Mitochondria-targeted supramolecular coordination container encapsulated with exogenous itaconate for synergistic therapy of joint inflammation. Theranostics. 2022;12(7):3251-3272. Published 2022 Apr 4. doi:10.7150/thno.70623(IF:11.556)
[13] Chen M, Wu J, Ning P, et al. Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment. Small. 2020;16(3):e1905424. doi:10.1002/smll.201905424(IF:10.856)
[14] Liu Z, Zhu Q, Song E, Song Y. Characterization of blood protein adsorption on PM2.5 and its implications on cellular uptake and cytotoxicity of PM2.5. J Hazard Mater. 2021;414:125499. doi:10.1016/j.jhazmat.2021.125499(IF:10.588)
[15] Zhao Q, Jiang D, Sun X, et al. Biomimetic nanotherapy: core-shell structured nanocomplexes based on the neutrophil membrane for targeted therapy of lymphoma. J Nanobiotechnology. 2021;19(1):179. Published 2021 Jun 13. doi:10.1186/s12951-021-00922-4(IF:10.435)
[16] Liu J, Ye Z, Xiang M, et al. Functional extracellular vesicles engineered with lipid-grafted hyaluronic acid effectively reverse cancer drug resistance. Biomaterials. 2019;223:119475. doi:10.1016/j.biomaterials.2019.119475(IF:10.273)
[17] Zhao LP, Chen SY, Zheng RR, et al. Self-Delivery Nanomedicine for Glutamine-Starvation Enhanced Photodynamic Tumor Therapy. Adv Healthc Mater. 2022;11(3):e2102038. doi:10.1002/adhm.202102038(IF:9.933)
[18] Yu M, Yu J, Yi Y, et al. Oxidative stress-amplified nanomedicine for intensified ferroptosis-apoptosis combined tumor therapy. J Control Release. 2022;347:104-114. doi:10.1016/j.jconrel.2022.04.047(IF:9.776)
[19] Wu X, Zhang X, Feng W, et al. A Targeted Erythrocyte Membrane-Encapsulated Drug-Delivery System with Anti-osteosarcoma and Anti-osteolytic Effects. ACS Appl Mater Interfaces. 2021;13(24):27920-27933. doi:10.1021/acsami.1c06059(IF:9.229)
[20] Ning P, Chen Y, Bai Q, et al. Multimodal Imaging-Guided Spatiotemporal Tracking of Photosensitive Stem Cells for Breast Cancer Treatment. ACS Appl Mater Interfaces. 2022;14(6):7551-7564. doi:10.1021/acsami.1c13072(IF:9.229)
[21] Tang Z, Luo C, Jun Y, et al. Nanovector Assembled from Natural Egg Yolk Lipids for Tumor-Targeted Delivery of Therapeutics. ACS Appl Mater Interfaces. 2020;12(7):7984-7994. doi:10.1021/acsami.9b22293(IF:8.758)
[22] Lv Y, Zhao X, Zhu L, et al. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics. 2018;8(10):2830-2845. Published 2018 Apr 15. doi:10.7150/thno.23209(IF:8.537)
[23] Liu J, Fu D, Wang K, et al. Improving regorafenib's organ target precision via nano-assembly to change its delivery mode abolishes chemoresistance and liver metastasis of colorectal cancer. J Colloid Interface Sci. 2022;607(Pt 1):229-241. doi:10.1016/j.jcis.2021.08.179(IF:8.128)
[24] Yu H, Li JM, Deng K, et al. Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy. Theranostics. 2019;9(23):7033-7050. Published 2019 Sep 21. doi:10.7150/thno.35748(IF:8.063)
[25] Yang X, Shi X, Zhang Y, et al. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. J Control Release. 2020;323:333-349. doi:10.1016/j.jconrel.2020.04.027(IF:7.727)
[26] Xing Y, Zhang J, Chen F, Liu J, Cai K. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale. 2017;9(25):8781-8790. doi:10.1039/c7nr01857f(IF:7.367)
[27] Chen X , Fu C , Wang Y , Wu Q , Meng X , Xu K . Mitochondria-targeting nanoparticles for enhanced microwave ablation of cancer. Nanoscale. 2018;10(33):15677-15685. doi:10.1039/c8nr03927e(IF:7.233)
[28] Su X, Wang Y, Wang W, Sun K, Chen L. Phospholipid Encapsulated AuNR@Ag/Au Nanosphere SERS Tags with Environmental Stimulus Responsive Signal Property. ACS Appl Mater Interfaces. 2016;8(16):10201-10211. doi:10.1021/acsami.6b01523(IF:7.145)
[29] Zhou B , Jiang Q , Xiao X , et al. Assisting anti-PD-1 antibody treatment with a liposomal system capable of recruiting immune cells. Nanoscale. 2019;11(16):7996-8011. doi:10.1039/c9nr01434a(IF:6.970)
[30] Sun Y, Liang Y, Hao N, et al. Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20(S)-camptothecin delivery and antitumor efficacy. Nanoscale. 2020;12(9):5380-5396. doi:10.1039/c9nr10574c(IF:6.895)
[31] Fei D, Xia Y, Zhai Q, et al. Exosomes Regulate Interclonal Communication on Osteogenic Differentiation Among Heterogeneous Osteogenic Single-Cell Clones Through PINK1/Parkin-Mediated Mitophagy. Front Cell Dev Biol. 2021;9:687258. Published 2021 Sep 17. doi:10.3389/fcell.2021.687258(IF:6.684)
[32] Yang N, Tang Q, Qin W, et al. Treatment of obesity-related inflammation with a novel synthetic pentacyclic oleanane triterpenoids via modulation of macrophage polarization. EBioMedicine. 2019;45:473-486. doi:10.1016/j.ebiom.2019.06.053(IF:6.680)
[33] Zhang XJ, Liu MH, Luo YS, et al. Novel dual-mode antitumor chlorin-based derivatives as potent photosensitizers and histone deacetylase inhibitors for photodynamic therapy and chemotherapy. Eur J Med Chem. 2021;217:113363. doi:10.1016/j.ejmech.2021.113363(IF:6.514)
[34] Hu S, Huang B, Pu Y, et al. A thermally activated delayed fluorescence photosensitizer for photodynamic therapy of oral squamous cell carcinoma under low laser intensity. J Mater Chem B. 2021;9(28):5645-5655. doi:10.1039/d1tb00719j(IF:6.331)
[35] Long Y, Wang Z, Fan J, et al. A hybrid membrane coating nanodrug system against gastric cancer via the VEGFR2/STAT3 signaling pathway. J Mater Chem B. 2021;9(18):3838-3855. doi:10.1039/d1tb00029b(IF:6.331)
[36] Wang S, Lv J, Pang Y, Hu S, Lin Y, Li M. Ion channel-targeting near-infrared photothermal switch with synergistic effect for specific cancer therapy. J Mater Chem B. 2022;10(5):748-756. Published 2022 Feb 2. doi:10.1039/d1tb02351a(IF:6.331)
[37] Zhou Z , Zhang W , Zhang L , et al. The synthesis of two-dimensional Bi2Te3@SiO2 core-shell nanosheets for fluorescence/photoacoustic/infrared (FL/PA/IR) tri-modal imaging-guided photothermal/photodynamic combination therapy. Biomater Sci. 2020;8(21):5874-5887. doi:10.1039/d0bm01394c(IF:6.183)
[38] Zhang X, Zhao M, Cao N, et al. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater Sci. 2020;8(7):1885-1896. doi:10.1039/c9bm01927h(IF:6.183)
[39] Zhou S, Peng X, Xu H, et al. Fluorescence Lifetime-Resolved Ion-Selective Nanospheres for Simultaneous Imaging of Calcium Ion in Mitochondria and Lysosomes. Anal Chem. 2018;90(13):7982-7988. doi:10.1021/acs.analchem.8b00735(IF:6.042)
[40] Xu J, Su Z, Cheng X, et al. High PPT1 expression predicts poor clinical outcome and PPT1 inhibitor DC661 enhances sorafenib sensitivity in hepatocellular carcinoma. Cancer Cell Int. 2022;22(1):115. Published 2022 Mar 11. doi:10.1186/s12935-022-02508-y(IF:5.722)
[41] Zhang XJ, Han GY, Guo CY, et al. Design, synthesis and biological evaluation of novel 31-hexyloxy chlorin e6-based 152– or 131-amino acid derivatives as potent photosensitizers for photodynamic therapy. Eur J Med Chem. 2020;207:112715. doi:10.1016/j.ejmech.2020.112715(IF:5.573)
[42] Jiang Z, Wang T, Yuan S, et al. A tumor-sensitive biological metal-organic complex for drug delivery and cancer therapy. J Mater Chem B. 2020;8(32):7189-7196. doi:10.1039/d0tb00599a(IF:5.344)
[43] Li W, Xie X, Wu T, et al. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces. 2019;181:305-314. doi:10.1016/j.colsurfb.2019.05.047(IF:5.268)
[44] Mamat M, Wang X, Wu L, et al. CaO2/Fe3O4 nanocomposites for oxygen-independent generation of radicals and cancer therapy. Colloids Surf B Biointerfaces. 2021;204:111803. doi:10.1016/j.colsurfb.2021.111803(IF:5.268)
[45] Liu L, Sun X, Guo Y, Ge K. Evodiamine induces ROS-Dependent cytotoxicity in human gastric cancer cells via TRPV1/Ca2+ pathway. Chem Biol Interact. 2022;351:109756. doi:10.1016/j.cbi.2021.109756(IF:5.194)
[46] Jiang Z, Chen Q, Yang X, et al. Polyplex Micelle with pH-Responsive PEG Detachment and Functional Tetraphenylene Incorporation to Promote Systemic Gene Expression. Bioconjug Chem. 2017;28(11):2849-2858. doi:10.1021/acs.bioconjchem.7b00557(IF:4.818)
[47] Dong Z , Han Q , Mou Z , Li G , Liu W . A reversible frequency upconversion probe for real-time intracellular lysosome-pH detection and subcellular imaging. J Mater Chem B. 2018;6(9):1322-1327. doi:10.1039/c7tb03089d(IF:4.776)
[48] Guo P , Gu W , Chen Q , et al. Dual functionalized amino poly(glycerol methacrylate) with guanidine and Schiff-base linked imidazole for enhanced gene transfection and minimized cytotoxicity. J Mater Chem B. 2015;3(34):6911-6918. doi:10.1039/c5tb01291k(IF:4.726)
[49] Xie Z, Zhao J, Wang H, et al. Magnolol alleviates Alzheimer's disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ. Biomed Pharmacother. 2020;124:109886. doi:10.1016/j.biopha.2020.109886(IF:4.545)
[50] Dong S , Chen Q , Li W , Jiang Z , Ma J , Gao H . A dendritic catiomer with an MOF motif for the construction of safe and efficient gene delivery systems. J Mater Chem B. 2017;5(42):8322-8329. doi:10.1039/c7tb01966a(IF:4.543)
[51] Huang X, Wu B, Li J, et al. Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy. Artif Cells Nanomed Biotechnol. 2019;47(1):968-979. doi:10.1080/21691401.2019.1584110(IF:4.462)
[52] Ge J , Zhang K , Fan L , et al. Novel long-wavelength emissive lysosome-targeting ratiometric fluorescent probes for imaging in live cells. Analyst. 2019;144(14):4288-4294. doi:10.1039/c9an00697d(IF:4.019)
[53] Wang H, Zhang Z, Guan J, Lu W, Zhan C. Unraveling GLUT-mediated transcytosis pathway of glycosylated nanodisks. Asian J Pharm Sci. 2021;16(1):120-128. doi:10.1016/j.ajps.2020.07.001(IF:3.968)
[54] Fan JH, Fan GL, Yuan P, et al. A Theranostic Nanoprobe for Hypoxia Imaging and Photodynamic Tumor Therapy. Front Chem. 2019;7:868. Published 2019 Dec 20. doi:10.3389/fchem.2019.00868(IF:3.782)
[55] Ma J, Wu H, Li Y, et al. Novel Core-Interlayer-Shell DOX/ZnPc Co-loaded MSNs@ pH-Sensitive CaP@PEGylated Liposome for Enhanced Synergetic Chemo-Photodynamic Therapy. Pharm Res. 2018;35(3):57. Published 2018 Feb 8. doi:10.1007/s11095-017-2295-z(IF:3.335)
[56] Tang M, Zhang P, Liu J, Long Y, Cheng Y, Zheng H. Cetyltrimethylammonium chloride-loaded mesoporous silica nanoparticles as a mitochondrion-targeting agent for tumor therapy. RSC Adv. 2020;10(29):17050-17057. Published 2020 Apr 30. doi:10.1039/d0ra02023k(IF:3.119)
[57] Gao YY, Yang RQ, Lou KL, et al. In vivo visualization of fluorescence reflecting CDK4 activity in a breast cancer mouse model. MedComm (2020). 2022;3(3):e136. Published 2022 Jun 10. doi:10.1002/mco2.136(IF:0.000)