腔肠素400a 天然荧光素荧光素酶底物|Coelenterazine 400a

腔肠素400a 天然荧光素荧光素酶底物|Coelenterazine 400a

产品说明书

FAQ

COA

已发表文献

腔肠素(Coelenterazine)是自然界中资源最丰富的天然荧光素,是绝大多数海洋发光生物(超过75%)的光能贮存分子。腔肠素可作为许多荧光素酶的底物,比如海肾荧光素酶(Rluc),Gaussia分泌型荧光素酶(Gluc),以及包括水母发光蛋白(aequorin)和薮枝螅发光蛋白(Obelia)在内的光蛋白(Photoproteins)。其发光原理是:以腔肠素为底物的荧光素酶在有分子氧的条件下,氧化腔肠素,产生高能量的中间产物,并在此过程中发射蓝色光,峰值发射波长约为450~480 nm。

腔肠素作为水母发光蛋白复合物(Aequorin)的组成成分只有与钙离子(Ca2+)结合后,才能被氧化生成高能量产物Coelenteramide,同时释放出CO2和蓝色荧光(~466 nm)。

其具有以下几个优点

1)能检测较大范围的Ca2+浓度0.1100 μM

2)样品无自体荧光,背景荧光较低尽管信号较荧光钙离子指示剂弱,但信噪比更高,因此具有较高灵敏度

3)Aequorin能够稳定维持在细胞内,能够进行数小时至数天Ca2+的监测。

腔肠素具有能量转移(Bioluminescence Resonance Energy Transfer,BRET)的特性在底物腔肠素存在的情况下,荧光素酶(如Rluc)催化底物发生蓝光能量转移到EYFP增强的黄色荧光蛋白,发出绿光(~530 nm)。通过Rluc融合蛋白和EYFP融合蛋白两者间的相互关系研究蛋白-蛋白之间的相互作用。BRET的信号可通过比较绿光和蓝光的量来进行测定,消减了因细胞数细胞类型和其他实验变量而引起的数据变量

 

主要应用

活体成像;报告基因检测;检测细胞/组织内活性氧(ROS)水平细胞和组织内的超氧阴离子过氧化亚硝基阴离子能够增强腔肠素在酶非依赖性的氧化体系中自发荧光高通量筛选监测活细胞内钙离子水平

 

产品描述

腔肠素400a(Coelenterazine 400a系天然腔肠素衍生物,是海肾荧光素酶(Rluc)的良好底物,但不能被Gaussia分泌型荧光素酶(Gluc氧化。它的最大发射波长在400 nm左右,对GFP受体蛋白的信号干扰最小,使得其成为BRET研究的重要腔肠素类底物。

 

产品性质

英文别名(English synonym)

DeepBlueCTM; Di-dehydro Coelenterazine

CAS号(CAS NO.)

70217-82-2

分子式(Formula)

C26H21N3O

分子量(Molecular weight)

391.48 g/mol

外观(Appearance)

黄色至橘色粉末

溶解性(Solubility)

溶于甲醇和乙醇,不溶于DMSO

纯度(Purity)(TLC

>98%

结构(Structure)

腔肠素400a 天然荧光素荧光素酶底物|Coelenterazine 400a

 

运输和保存方法

冰袋运输。粉末-20℃避光干燥保存,最好保存在惰性气体环境下,避免接触空气。有效期1年。

 

腔肠素400a工作液的配制

腔肠素400a溶解特性不溶于水。目前毒性最低的溶剂是100%乙醇,可配制浓度为0.1-1 mg/ml。加入pH低于7.0的酸性缓冲液(碱性pH会快速降解底物)稀释成低浓度工作液。切忌溶于DMSO。

腔肠素400a保存特性建议溶液现配现用!体外实验,需将稀释后的工作液室温放置20-30 min,方可稳定工作。该工作液可室温稳定放置3-4 h,有非常微弱的信号衰减发生。不建议储存液-20℃或更低温度保存,因为其高能量的二氧环丁酮结构即使在低温的情况下也会发生降解,导致荧光强度明显变弱。短时间保存条件:-70℃避光保存于塑料管内(溶液中不含有Ca2+),且有惰性气体保护。

腔肠素工作液的配制称取1 mg腔肠素400a粉末溶解于1 ml乙醇(或甲醇)中配置成浓度为1 mg/ml的母液。在使用时需将液用合适的缓冲液比如PBS稀释成需要浓度的工作液。比如常用的工作液浓度是100 μM,可使用391.5ul 的1 mg/ml的母液用PBS稀释到10ml,得到一个100uM的溶液。

 

BRET 生物发光共振能量转移(可根据具体实验发生变动)

详细步骤可参考文献:Gersting SW, et al. Bioluminescence resonance energy transfer:an emerging tool for the detection of protein-protein interaction in living cells. Methods Mol Biol. 815:253-63 (2012)

本步骤以Rluc的融合蛋白作为能量供体,YFP的融合蛋白作为能量受体,两者同时电转化进入细胞,并通过加载腔肠素400a底物来启动氧化反应,通过分析两者BRET信号来研究两个蛋白之间的相互作用。

1. 按照正常流程将能表达两个融合蛋白的质粒,按照3:1的比例(YFP : Rluc)共电转染进入细胞。

2. 转染后24 h进行BRET信号的检测。吸去培养液(留约30 μl)后,将96孔板放到荧光酶标仪上。

3. 至少在测定前15 min准备腔肠素400a工作液。

4. 用超纯水清洗注射泵后,让泵开始自动吸取配制好的400a工作液,按照每孔70 µl工作液的量顺序加入,使得每孔中底物的终浓度为30 µM。进样结束后,孵育2 min。之后立即进行双波长荧光信号读数,即Rluc信号(485 nm)和BRET信号(535 nm)。

 

BRET信号值计算

为了能够进行数据评估,转染细胞的Rluc信号(485 nm)应当超过非转染对照细胞的(平均值+9×标准误差)的区间。

1. BRETratio(BRET信号比)基于以下等式进行计算,

R=(IA/ID-cf

R代表BRET比值,ID表示受体YFP荧光信号的强度(535 nm),IA表示供体Rluc荧光信号的强度(485 nm),cf表示校准因子(BRETcontrol/Rluccontrol D),对照样本是指共转染YFP融合蛋白质粒和不含供体第二个研究蛋白的Rluc载体的细胞荧光信号。

2. 阳性对照,使用YFP-Rluc融合蛋白的BRET比值为1.0。

3. 若蛋白之间有阳性反应,必须检测到:8组蛋白样本中至少有一组能够产生超过设定阈值0.1以上的BRET信号比值。

 

注意事项

1. 粉末最好使用惰性气体(氮气或氩气),在密封良好的塑料管中避光保存于-20,长期保存于70。管内即使存在少量空气,可能造成腔肠素cp氧化失活,造成在不同试验间的量化分析结果无法比较。

2. 本品接触空气,水或者任何氧化试剂会不稳定。

3. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

4. 本产品仅作科研用途!

HB220606

 

Q:腹腔注射和尾静脉注射方式的区别是什么?

A:荧光素可通过腹腔注射或尾部静脉注射注入小鼠体内。对于腹腔注射来讲,扩散较慢,开始发光较慢,持续发光时间较长。对于荧光素的尾部静脉注射,扩散快,开始发光快,但发光持续时间较短。

Q:该系列产品主要用于哪些应用?

A:除用于活体成像外,荧光素类产品还用于荧光素酶参与的其他应用中,如体外报告基因检测、微生物/病毒监测、焦磷酸测序等。

Q:推荐仪器?多功能酶标仪能用吗?

A:推荐仪器:具有生物化学发光检测模块。荧光素产生的光可以被光度计或闪烁计数器检测。常见的活体成像仪器:如 IVIS® Lumina 小动物活体成像系统,德国 Bruker 公司的 In-Vivo Xtreme 多模式小动物活体成像仪。多功能酶标仪:需要和仪器厂家确认是否具体生物化学发光检测模块。注:不能用荧光显微镜。

Q:D-荧光素钠盐和天然腔肠素做烟草的成像,需要用什么溶液稀释?

A:水或PBS,不含钙镁离子就行。Mg2+是催化荧光素底物氧化的重要因素,而 Ca2+是和腔肠素底物氧化有关的离子。

Q:腔肠素的发光特性如何?

A:体外:细胞孵育 10-15min 后,立即检测。 体内:可在注射后 10-15 min 内检测。

仅供参考,建议预实验建立荧光素酶动力学曲线,从而确定最高信号检测时间和信号平台期。

腔肠素400a 天然荧光素荧光素酶底物|Coelenterazine 400a

暂无内容

腔肠素(Coelenterazine)是自然界中资源最丰富的天然荧光素,是绝大多数海洋发光生物(超过75%)的光能贮存分子。腔肠素可作为许多荧光素酶的底物,比如海肾荧光素酶(Rluc),Gaussia分泌型荧光素酶(Gluc),以及包括水母发光蛋白(aequorin)和薮枝螅发光蛋白(Obelia)在内的光蛋白(Photoproteins)。其发光原理是:以腔肠素为底物的荧光素酶在有分子氧的条件下,氧化腔肠素,产生高能量的中间产物,并在此过程中发射蓝色光,峰值发射波长约为450~480 nm。

腔肠素作为水母发光蛋白复合物(Aequorin)的组成成分只有与钙离子(Ca2+)结合后,才能被氧化生成高能量产物Coelenteramide,同时释放出CO2和蓝色荧光(~466 nm)。

其具有以下几个优点

1)能检测较大范围的Ca2+浓度0.1100 μM

2)样品无自体荧光,背景荧光较低尽管信号较荧光钙离子指示剂弱,但信噪比更高,因此具有较高灵敏度

3)Aequorin能够稳定维持在细胞内,能够进行数小时至数天Ca2+的监测。

腔肠素具有能量转移(Bioluminescence Resonance Energy Transfer,BRET)的特性在底物腔肠素存在的情况下,荧光素酶(如Rluc)催化底物发生蓝光能量转移到EYFP增强的黄色荧光蛋白,发出绿光(~530 nm)。通过Rluc融合蛋白和EYFP融合蛋白两者间的相互关系研究蛋白-蛋白之间的相互作用。BRET的信号可通过比较绿光和蓝光的量来进行测定,消减了因细胞数细胞类型和其他实验变量而引起的数据变量

 

主要应用

活体成像;报告基因检测;检测细胞/组织内活性氧(ROS)水平细胞和组织内的超氧阴离子过氧化亚硝基阴离子能够增强腔肠素在酶非依赖性的氧化体系中自发荧光高通量筛选监测活细胞内钙离子水平

 

产品描述

腔肠素400a(Coelenterazine 400a系天然腔肠素衍生物,是海肾荧光素酶(Rluc)的良好底物,但不能被Gaussia分泌型荧光素酶(Gluc氧化。它的最大发射波长在400 nm左右,对GFP受体蛋白的信号干扰最小,使得其成为BRET研究的重要腔肠素类底物。

 

产品性质

英文别名(English synonym)

DeepBlueCTM; Di-dehydro Coelenterazine

CAS号(CAS NO.)

70217-82-2

分子式(Formula)

C26H21N3O

分子量(Molecular weight)

391.48 g/mol

外观(Appearance)

黄色至橘色粉末

溶解性(Solubility)

溶于甲醇和乙醇,不溶于DMSO

纯度(Purity)(TLC

>98%

结构(Structure)

腔肠素400a 天然荧光素荧光素酶底物|Coelenterazine 400a

 

运输和保存方法

冰袋运输。粉末-20℃避光干燥保存,最好保存在惰性气体环境下,避免接触空气。有效期1年。

 

腔肠素400a工作液的配制

腔肠素400a溶解特性不溶于水。目前毒性最低的溶剂是100%乙醇,可配制浓度为0.1-1 mg/ml。加入pH低于7.0的酸性缓冲液(碱性pH会快速降解底物)稀释成低浓度工作液。切忌溶于DMSO。

腔肠素400a保存特性建议溶液现配现用!体外实验,需将稀释后的工作液室温放置20-30 min,方可稳定工作。该工作液可室温稳定放置3-4 h,有非常微弱的信号衰减发生。不建议储存液-20℃或更低温度保存,因为其高能量的二氧环丁酮结构即使在低温的情况下也会发生降解,导致荧光强度明显变弱。短时间保存条件:-70℃避光保存于塑料管内(溶液中不含有Ca2+),且有惰性气体保护。

腔肠素工作液的配制称取1 mg腔肠素400a粉末溶解于1 ml乙醇(或甲醇)中配置成浓度为1 mg/ml的母液。在使用时需将液用合适的缓冲液比如PBS稀释成需要浓度的工作液。比如常用的工作液浓度是100 μM,可使用391.5ul 的1 mg/ml的母液用PBS稀释到10ml,得到一个100uM的溶液。

 

BRET 生物发光共振能量转移(可根据具体实验发生变动)

详细步骤可参考文献:Gersting SW, et al. Bioluminescence resonance energy transfer:an emerging tool for the detection of protein-protein interaction in living cells. Methods Mol Biol. 815:253-63 (2012)

本步骤以Rluc的融合蛋白作为能量供体,YFP的融合蛋白作为能量受体,两者同时电转化进入细胞,并通过加载腔肠素400a底物来启动氧化反应,通过分析两者BRET信号来研究两个蛋白之间的相互作用。

1. 按照正常流程将能表达两个融合蛋白的质粒,按照3:1的比例(YFP : Rluc)共电转染进入细胞。

2. 转染后24 h进行BRET信号的检测。吸去培养液(留约30 μl)后,将96孔板放到荧光酶标仪上。

3. 至少在测定前15 min准备腔肠素400a工作液。

4. 用超纯水清洗注射泵后,让泵开始自动吸取配制好的400a工作液,按照每孔70 µl工作液的量顺序加入,使得每孔中底物的终浓度为30 µM。进样结束后,孵育2 min。之后立即进行双波长荧光信号读数,即Rluc信号(485 nm)和BRET信号(535 nm)。

 

BRET信号值计算

为了能够进行数据评估,转染细胞的Rluc信号(485 nm)应当超过非转染对照细胞的(平均值+9×标准误差)的区间。

1. BRETratio(BRET信号比)基于以下等式进行计算,

R=(IA/ID-cf

R代表BRET比值,ID表示受体YFP荧光信号的强度(535 nm),IA表示供体Rluc荧光信号的强度(485 nm),cf表示校准因子(BRETcontrol/Rluccontrol D),对照样本是指共转染YFP融合蛋白质粒和不含供体第二个研究蛋白的Rluc载体的细胞荧光信号。

2. 阳性对照,使用YFP-Rluc融合蛋白的BRET比值为1.0。

3. 若蛋白之间有阳性反应,必须检测到:8组蛋白样本中至少有一组能够产生超过设定阈值0.1以上的BRET信号比值。

 

注意事项

1. 粉末最好使用惰性气体(氮气或氩气),在密封良好的塑料管中避光保存于-20,长期保存于70。管内即使存在少量空气,可能造成腔肠素cp氧化失活,造成在不同试验间的量化分析结果无法比较。

2. 本品接触空气,水或者任何氧化试剂会不稳定。

3. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

4. 本产品仅作科研用途!

HB220606

 

Q:腹腔注射和尾静脉注射方式的区别是什么?

A:荧光素可通过腹腔注射或尾部静脉注射注入小鼠体内。对于腹腔注射来讲,扩散较慢,开始发光较慢,持续发光时间较长。对于荧光素的尾部静脉注射,扩散快,开始发光快,但发光持续时间较短。

Q:该系列产品主要用于哪些应用?

A:除用于活体成像外,荧光素类产品还用于荧光素酶参与的其他应用中,如体外报告基因检测、微生物/病毒监测、焦磷酸测序等。

Q:推荐仪器?多功能酶标仪能用吗?

A:推荐仪器:具有生物化学发光检测模块。荧光素产生的光可以被光度计或闪烁计数器检测。常见的活体成像仪器:如 IVIS® Lumina 小动物活体成像系统,德国 Bruker 公司的 In-Vivo Xtreme 多模式小动物活体成像仪。多功能酶标仪:需要和仪器厂家确认是否具体生物化学发光检测模块。注:不能用荧光显微镜。

Q:D-荧光素钠盐和天然腔肠素做烟草的成像,需要用什么溶液稀释?

A:水或PBS,不含钙镁离子就行。Mg2+是催化荧光素底物氧化的重要因素,而 Ca2+是和腔肠素底物氧化有关的离子。

Q:腔肠素的发光特性如何?

A:体外:细胞孵育 10-15min 后,立即检测。 体内:可在注射后 10-15 min 内检测。

仅供参考,建议预实验建立荧光素酶动力学曲线,从而确定最高信号检测时间和信号平台期。

腔肠素400a 天然荧光素荧光素酶底物|Coelenterazine 400a

暂无内容

腔肠素h 天然腔肠素去羟基衍生物|Coelenterazine h

腔肠素h 天然腔肠素去羟基衍生物|Coelenterazine h

产品说明书

FAQ

COA

已发表文献

产品描述

腔肠素hCoelenterazine h天然腔肠素的去羟基衍生物,是海肾荧光素酶(Rluc的作用底物,也是水母发光蛋白的辅因子,发光强度比天然腔肠素高10倍以上,适用于报告基因分析。也是水母发光蛋白的辅助因子,可用于检测活细胞中钙离子浓度基因报告分析,BRET(生物发光共振能量转移)研究,ELISAHTS以及组织或细胞中ROS水平的化学发光检测。

 

产品性质

英文别名(English synonym

2-Deoxycoelenterazine; CLZN-h; h-CTZ

CAS号(CAS NO

50909-86-9

分子式(Formula

C26H21N3O2

分子量(Molecular weight

407.5 g/mol

外观Appearance

黄色固体

溶解性(Solubility

可溶于甲醇和乙醇,不可溶于DMSO

纯度(Purity)(TLC

>99% 

结构(Structure

腔肠素h 天然腔肠素去羟基衍生物|Coelenterazine h 

 

运输和保存方法

冰袋运输。粉末-20避光干燥保存,最好保存在惰性气体环境下,避免接触空气;长期保存于-70,有效期2年。

 

腔肠素h溶液的配制
对于所有进行荧光信号检测的试验建议溶液现用现配。建议可用乙醇或丙二醇配制成储存液(配制浓度可参考文献推荐),在使用时需将储存液用合适的缓冲液稀释成工作液

 

注意事项

1)腔肠素h的干燥粉末在密封状态下较稳定,可避光保存于-20或更低温度。可通过在管内充入惰性气体(氮气或氩气)防止其氧化。

2)当使用多孔板进行荧光值的检测时,建议通过设置对照孔来消除由于腔肠素在工作液中不断被氧化所带来的误差。

3)该产品适用于体外生物发光检测;对于活体动物成像检测,建议使用 Ready To Use Coelenterazine h(见Yeasen 40907ES10)即用型腔肠素h

4)不同种类的荧光素酶存在很大的区别。如腔肠素h和腔肠素F可作为海肾荧光素酶的底物,但对于Gaussia荧光素酶是无效的。

5为了您的安全和健康,请穿实验服并戴一次性手套操作。

6)本产品仅作科研用途!

HB220826

 

Q: 腔肠素溶液如何配制?

A: (1)腔肠素溶液配制方式来源文献,仅供参考,具体工作浓度建议参考文献做梯度摸索最佳浓度。 母液:称取 1mg 腔肠素粉末直接溶解于 197µl 酸化的甲醇溶液( 100% 甲醇中含有  20µl/ml 3M  或者  6M HCl),配制成  12 mM (~5mg/ml,5×) 的腔肠素储存液。 工作液:如体外:10 的 5 次方的细胞数可用 10 μ M 。

Q:腔肠素的发光特性如何?

A: 体外:细胞孵育 10-15min 后,立即检测。 体内:可在注射后 10-15 min 内检测。

仅供参考,建议预实验建立荧光素酶动力学曲线,从而确定最高信号检测时间和信号平台期。

Q:是否能用于活体成像?

A: 一般用于体外,因为容易氧化,体内的话要注射和麻醉,时间久,体外检测快,不影响。体内的话推荐即用型。

Q:推荐仪器?多功能酶标仪能用吗?

A: 推荐仪器:具有生物化学发光检测模块。荧光素产生的光可以被光度计或闪烁计数器检测。常见的活体成像仪器:如 IVIS® Lumina 小动物活体成像系统,德国 Bruker 公司的 In-Vivo Xtreme 多模式小动物活体成像仪。多功能酶标仪:需要和仪器厂家确认是否具体生物化学发光检测模块。注:不能用荧光显微镜。

Q:说明书写到的配置储存液用的丙二醇是1,2-丙二醇吗?乙醇是无水乙醇吗

A: 是的,丙二醇是1,2-丙二醇,乙醇是无水乙醇

[1] Lin S, Han S, Cai X, et al. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature. 2021;594(7864):583-588. doi:10.1038/s41586-021-03495-2(IF:49.962)
[2] Ma S, Chen Y, Dai A, et al. Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. Cell Res. 2021;31(10):1061-1071. doi:10.1038/s41422-021-00557-y(IF:25.617)
[3] Zhang H, Chen LN, Yang D, et al. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Res. 2021;31(11):1163-1175. doi:10.1038/s41422-021-00552-3(IF:25.617)
[4] Shao Z, Shen Q, Yao B, et al. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol. 2022;18(3):264-271. doi:10.1038/s41589-021-00918-z(IF:15.040)
[5] Liu Q, Yang D, Zhuang Y, et al. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nat Chem Biol. 2021;17(12):1238-1244. doi:10.1038/s41589-021-00841-3(IF:15.040)
[6] Zhao F, Zhou Q, Cong Z, et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun. 2022;13(1):1057. Published 2022 Feb 25. doi:10.1038/s41467-022-28683-0(IF:14.919)
[7] Zhou F, Zhang H, Cong Z, et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun. 2020;11(1):5205. Published 2020 Oct 15. doi:10.1038/s41467-020-18945-0(IF:12.121)
[8] Shao L, Chen Y, Zhang S, et al. Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharm Sin B. 2022;12(2):637-650. doi:10.1016/j.apsb.2021.07.028(IF:11.614)
[9] Shao Z, Tan Y, Shen Q, et al. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov. 2022;8(1):44. Published 2022 May 15. doi:10.1038/s41421-022-00403-4(IF:10.849)
[10] Zhao F, Zhang C, Zhou Q, et al. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. Elife. 2021;10:e68719. Published 2021 Jul 13. doi:10.7554/eLife.68719(IF:8.146)
[11] Wang YZ, Yang DH, Wang MW. Signaling profiles in HEK 293T cells co-expressing GLP-1 and GIP receptors. Acta Pharmacol Sin. 2022;43(6):1453-1460. doi:10.1038/s41401-021-00758-6(IF:6.150)
[12] Wang J, Yang D, Cheng X, et al. Allosteric Modulators Enhancing GLP-1 Binding to GLP-1R via a Transmembrane Site. ACS Chem Biol. 2021;16(11):2444-2452. doi:10.1021/acschembio.1c00552(IF:5.100)
[13] Lin GY, Lin L, Cai XQ, et al. High-throughput screening campaign identifies a small molecule agonist of the relaxin family peptide receptor 4. Acta Pharmacol Sin. 2020;41(10):1328-1336. doi:10.1038/s41401-020-0390-x(IF:5.064)
[14] Darbalaei S, Yuliantie E, Dai A, et al. Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochem Pharmacol. 2020;180:114150. doi:10.1016/j.bcp.2020.114150(IF:4.960)
[15] Yuliantie E, Darbalaei S, Dai A, et al. Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol. 2020;177:114001. doi:10.1016/j.bcp.2020.114001(IF:4.960)
[16] Sun L, Hao Y, Wang Z, Zeng Y. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines. Viruses. 2018;10(4):145. Published 2018 Mar 23. doi:10.3390/v10040145(IF:3.761)

产品描述

腔肠素hCoelenterazine h天然腔肠素的去羟基衍生物,是海肾荧光素酶(Rluc的作用底物,也是水母发光蛋白的辅因子,发光强度比天然腔肠素高10倍以上,适用于报告基因分析。也是水母发光蛋白的辅助因子,可用于检测活细胞中钙离子浓度基因报告分析,BRET(生物发光共振能量转移)研究,ELISAHTS以及组织或细胞中ROS水平的化学发光检测。

 

产品性质

英文别名(English synonym

2-Deoxycoelenterazine; CLZN-h; h-CTZ

CAS号(CAS NO

50909-86-9

分子式(Formula

C26H21N3O2

分子量(Molecular weight

407.5 g/mol

外观Appearance

黄色固体

溶解性(Solubility

可溶于甲醇和乙醇,不可溶于DMSO

纯度(Purity)(TLC

>99% 

结构(Structure

腔肠素h 天然腔肠素去羟基衍生物|Coelenterazine h 

 

运输和保存方法

冰袋运输。粉末-20避光干燥保存,最好保存在惰性气体环境下,避免接触空气;长期保存于-70,有效期2年。

 

腔肠素h溶液的配制
对于所有进行荧光信号检测的试验建议溶液现用现配。建议可用乙醇或丙二醇配制成储存液(配制浓度可参考文献推荐),在使用时需将储存液用合适的缓冲液稀释成工作液

 

注意事项

1)腔肠素h的干燥粉末在密封状态下较稳定,可避光保存于-20或更低温度。可通过在管内充入惰性气体(氮气或氩气)防止其氧化。

2)当使用多孔板进行荧光值的检测时,建议通过设置对照孔来消除由于腔肠素在工作液中不断被氧化所带来的误差。

3)该产品适用于体外生物发光检测;对于活体动物成像检测,建议使用 Ready To Use Coelenterazine h(见Yeasen 40907ES10)即用型腔肠素h

4)不同种类的荧光素酶存在很大的区别。如腔肠素h和腔肠素F可作为海肾荧光素酶的底物,但对于Gaussia荧光素酶是无效的。

5为了您的安全和健康,请穿实验服并戴一次性手套操作。

6)本产品仅作科研用途!

HB220826

 

Q: 腔肠素溶液如何配制?

A: (1)腔肠素溶液配制方式来源文献,仅供参考,具体工作浓度建议参考文献做梯度摸索最佳浓度。 母液:称取 1mg 腔肠素粉末直接溶解于 197µl 酸化的甲醇溶液( 100% 甲醇中含有  20µl/ml 3M  或者  6M HCl),配制成  12 mM (~5mg/ml,5×) 的腔肠素储存液。 工作液:如体外:10 的 5 次方的细胞数可用 10 μ M 。

Q:腔肠素的发光特性如何?

A: 体外:细胞孵育 10-15min 后,立即检测。 体内:可在注射后 10-15 min 内检测。

仅供参考,建议预实验建立荧光素酶动力学曲线,从而确定最高信号检测时间和信号平台期。

Q:是否能用于活体成像?

A: 一般用于体外,因为容易氧化,体内的话要注射和麻醉,时间久,体外检测快,不影响。体内的话推荐即用型。

Q:推荐仪器?多功能酶标仪能用吗?

A: 推荐仪器:具有生物化学发光检测模块。荧光素产生的光可以被光度计或闪烁计数器检测。常见的活体成像仪器:如 IVIS® Lumina 小动物活体成像系统,德国 Bruker 公司的 In-Vivo Xtreme 多模式小动物活体成像仪。多功能酶标仪:需要和仪器厂家确认是否具体生物化学发光检测模块。注:不能用荧光显微镜。

Q:说明书写到的配置储存液用的丙二醇是1,2-丙二醇吗?乙醇是无水乙醇吗

A: 是的,丙二醇是1,2-丙二醇,乙醇是无水乙醇

[1] Lin S, Han S, Cai X, et al. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature. 2021;594(7864):583-588. doi:10.1038/s41586-021-03495-2(IF:49.962)
[2] Ma S, Chen Y, Dai A, et al. Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. Cell Res. 2021;31(10):1061-1071. doi:10.1038/s41422-021-00557-y(IF:25.617)
[3] Zhang H, Chen LN, Yang D, et al. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Res. 2021;31(11):1163-1175. doi:10.1038/s41422-021-00552-3(IF:25.617)
[4] Shao Z, Shen Q, Yao B, et al. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol. 2022;18(3):264-271. doi:10.1038/s41589-021-00918-z(IF:15.040)
[5] Liu Q, Yang D, Zhuang Y, et al. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nat Chem Biol. 2021;17(12):1238-1244. doi:10.1038/s41589-021-00841-3(IF:15.040)
[6] Zhao F, Zhou Q, Cong Z, et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun. 2022;13(1):1057. Published 2022 Feb 25. doi:10.1038/s41467-022-28683-0(IF:14.919)
[7] Zhou F, Zhang H, Cong Z, et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun. 2020;11(1):5205. Published 2020 Oct 15. doi:10.1038/s41467-020-18945-0(IF:12.121)
[8] Shao L, Chen Y, Zhang S, et al. Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharm Sin B. 2022;12(2):637-650. doi:10.1016/j.apsb.2021.07.028(IF:11.614)
[9] Shao Z, Tan Y, Shen Q, et al. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov. 2022;8(1):44. Published 2022 May 15. doi:10.1038/s41421-022-00403-4(IF:10.849)
[10] Zhao F, Zhang C, Zhou Q, et al. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. Elife. 2021;10:e68719. Published 2021 Jul 13. doi:10.7554/eLife.68719(IF:8.146)
[11] Wang YZ, Yang DH, Wang MW. Signaling profiles in HEK 293T cells co-expressing GLP-1 and GIP receptors. Acta Pharmacol Sin. 2022;43(6):1453-1460. doi:10.1038/s41401-021-00758-6(IF:6.150)
[12] Wang J, Yang D, Cheng X, et al. Allosteric Modulators Enhancing GLP-1 Binding to GLP-1R via a Transmembrane Site. ACS Chem Biol. 2021;16(11):2444-2452. doi:10.1021/acschembio.1c00552(IF:5.100)
[13] Lin GY, Lin L, Cai XQ, et al. High-throughput screening campaign identifies a small molecule agonist of the relaxin family peptide receptor 4. Acta Pharmacol Sin. 2020;41(10):1328-1336. doi:10.1038/s41401-020-0390-x(IF:5.064)
[14] Darbalaei S, Yuliantie E, Dai A, et al. Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochem Pharmacol. 2020;180:114150. doi:10.1016/j.bcp.2020.114150(IF:4.960)
[15] Yuliantie E, Darbalaei S, Dai A, et al. Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol. 2020;177:114001. doi:10.1016/j.bcp.2020.114001(IF:4.960)
[16] Sun L, Hao Y, Wang Z, Zeng Y. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines. Viruses. 2018;10(4):145. Published 2018 Mar 23. doi:10.3390/v10040145(IF:3.761)

腔肠素f 天然腔肠素衍生物|Coelenterazine f

腔肠素f 天然腔肠素衍生物|Coelenterazine f

产品说明书

FAQ

COA

已发表文献

腔肠素(Coelenterazine)是自然界中资源最丰富的天然荧光素,是绝大多数海洋发光生物(超过75%)的光能贮存分子。腔肠素可作为许多荧光素酶的底物,比如海肾荧光素酶(Rluc),Gaussia分泌型荧光素酶(Gluc),以及包括水母发光蛋白(aequorin)和薮枝螅发光蛋白(Obelia)在内的光蛋白(Photoproteins)。其发光原理是:以腔肠素为底物的荧光素酶在有分子氧的条件下,氧化腔肠素,产生高能量的中间产物,并在此过程中发射蓝色光,峰值发射波长约为450~480 nm。

腔肠素作为水母发光蛋白复合物(Aequorin)的组成成分,只有与钙离子(Ca2+)结合后,才能被氧化生成高能量产物Coelenteramide,同时释放出CO2和蓝色荧光(~466 nm)(图1)。其具有以下几个优点:1)能检测较大范围的Ca2+浓度(0.1-100μM);2)样品无自体荧光,背景荧光较低,尽管信号较荧光钙离子指示剂弱,但信噪比更高,因此具有较高灵敏度;3)Aequorin能够稳定维持在细胞内,能够进行数小时至数天Ca2+的监测。

腔肠素f 天然腔肠素衍生物|Coelenterazine f

图1. 腔肠素作为水母发光蛋白辅助因子的Ca2+依赖反应流程

腔肠素具有能量转移(Bioluminescence Resonance Energy Transfer,BRET)的特性:在底物腔肠素存在的情况下,荧光素酶(如Rluc)催化底物发生蓝光,能量转移到EYFP(增强的黄色荧光蛋白),发出绿光(~530 nm)。通过Rluc融合蛋白和EYFP融合蛋白两者间的相互关系研究蛋白-蛋白之间的相互作用。BRET的信号可通过比较绿光和蓝光的量来进行测定,消减了因细胞数、细胞类型和其他实验变量而引起的数据变量。

主要应用

1. 活体成像。

2. 报告基因检测。

3. 检测细胞/组织内活性氧(ROS)水平:细胞和组织内的超氧阴离子和过氧化亚硝基阴离子能够增强腔肠素在酶非依赖性的氧化体系中自发荧光。

4. 高通量筛选。

5. 监测活细胞内钙离子水平。

产品描述

腔肠素f(Coelenterazine f)系天然腔肠素衍生物,是水母发光蛋白的底物。腔肠素f与天然腔肠素结构上的差别在于氟(F)原子替换R-1位酚基上的羟基。腔肠素f和水母蛋白被氧化后活化,生成腔肠素的亚稳态复合物。该复合物生成时间非常短,而天然腔肠素-水母蛋白复合物的生成反应很慢(60 min内仅有40%的天然腔肠素完成反应)。与天然腔肠素-水母蛋白复合物产生的光子总数相比,此复合物仅产生80%的光子能。

腔肠素f与Ca2+接触时,可快速且高产量的发光,产能强度是天然腔肠素的20倍。同时,腔肠素f具有最好的细胞渗透性。当需要极高的Ca2+检测灵敏度来研究水母蛋白再生实验时,推荐使用本底物。

产品性质

英文别名(English synonym)

CLZ-F;CLZN-F;Coelenterazine-Fluoride

CAS号(CAS NO.)

123437-16-1

分子式(Formula)

C26H20FN3O2

分子量(Molecular weight)

425.46

外观(Appearance)

黄色至褐色粉末

溶解性(Solubility)

溶于甲醇或者乙醇,不可溶于DMSO

纯度(Purity)(TLC)

>95%

结构(Structure)

腔肠素f 天然腔肠素衍生物|Coelenterazine f

运输和保存方法

冰袋运输。粉末-20℃避光干燥保存,最好保存在惰性气体环境下,避免接触空气。

腔肠素f工作液的配制

腔肠素f溶解:不溶于水。目前毒性最低的溶剂是100%乙醇,可配制浓度为0.1-1 mg/ml。加入pH低于7.0的酸性缓冲液(碱性pH会快速降解底物)稀释成低浓度工作液。切忌溶于DMSO。

腔肠素f保存:建议溶液现配现用!体外实验,需将稀释后的工作液室温放置20-30 min,方可稳定工作。该工作液可室温稳定放置3-4 h,有非常微弱的信号衰减发生。不建议储存液-20℃或更低温度保存,因为其高能量的二氧环丁酮结构即使在低温的情况下也会发生降解,导致荧光强度明显变弱。短时间保存条件:-70℃避光保存于塑料管内(溶液中不含有Ca2+),且有惰性气体保护。

注意事项

1.粉末最好使用惰性气体(氮气或氩气),在密封良好的塑料管中避光保存于-20℃,长期保存于-70℃。管内即使存在少量空气,可能造成腔肠素n氧化失活,造成在不同试验间的量化分析结果无法比较。

2.本品接触空气,水或者任何氧化试剂会不稳定。
3. 本产品仅作科研用途!

相关产品

产品名称

货号

规格

D-Luciferin,Sodium Salt D 荧光素钠盐 

40901ES01/02/03/08/10

0.1/0.5/1/5/10g

D-Luciferin,Potassium Salt D 荧光素钾盐

40902ES01/02/03/08

0.1/0.5/1/5 g

D-Luciferin Firefly, Free Acid D 萤火虫荧光素,游离酸

40903ES01/02/03

0.1/0.5/1 g

Coelenterazine Native 天然腔肠素

40904ES02/03/08

0.5/1/5 mg

Coelenterazine 400 a腔肠素 400a

40905ES02/03

0.5/1 mg

Coelenterazine h 腔肠素h

40906ES02/03/08/10

0.5/1 mg

Coelenterazine f 腔肠素f

40908ES02/03

0.5/1 μg

Coelenterazine cp 腔肠素cp

40909ES72

1×250 μg

Coelenterazine hcp 腔肠素hcp

40910ES72

1×250 μg

Coelenterazine n 腔肠素n

40911ES72

1×250 μg

Coelenterazine e 腔肠素e

40912ES02/03

0.5/1 mg

Coelenterazine 2-methyl 二甲基腔肠素

40913ES50

1×50 μg

Luciferase (firefly recombinant)

40914ES03

1 mg

HB181121

 

腔肠素f 天然腔肠素衍生物|Coelenterazine f

暂无内容

腔肠素f 天然腔肠素衍生物|Coelenterazine f

暂无内容

腔肠素(Coelenterazine)是自然界中资源最丰富的天然荧光素,是绝大多数海洋发光生物(超过75%)的光能贮存分子。腔肠素可作为许多荧光素酶的底物,比如海肾荧光素酶(Rluc),Gaussia分泌型荧光素酶(Gluc),以及包括水母发光蛋白(aequorin)和薮枝螅发光蛋白(Obelia)在内的光蛋白(Photoproteins)。其发光原理是:以腔肠素为底物的荧光素酶在有分子氧的条件下,氧化腔肠素,产生高能量的中间产物,并在此过程中发射蓝色光,峰值发射波长约为450~480 nm。

腔肠素作为水母发光蛋白复合物(Aequorin)的组成成分,只有与钙离子(Ca2+)结合后,才能被氧化生成高能量产物Coelenteramide,同时释放出CO2和蓝色荧光(~466 nm)(图1)。其具有以下几个优点:1)能检测较大范围的Ca2+浓度(0.1-100μM);2)样品无自体荧光,背景荧光较低,尽管信号较荧光钙离子指示剂弱,但信噪比更高,因此具有较高灵敏度;3)Aequorin能够稳定维持在细胞内,能够进行数小时至数天Ca2+的监测。

腔肠素f 天然腔肠素衍生物|Coelenterazine f

图1. 腔肠素作为水母发光蛋白辅助因子的Ca2+依赖反应流程

腔肠素具有能量转移(Bioluminescence Resonance Energy Transfer,BRET)的特性:在底物腔肠素存在的情况下,荧光素酶(如Rluc)催化底物发生蓝光,能量转移到EYFP(增强的黄色荧光蛋白),发出绿光(~530 nm)。通过Rluc融合蛋白和EYFP融合蛋白两者间的相互关系研究蛋白-蛋白之间的相互作用。BRET的信号可通过比较绿光和蓝光的量来进行测定,消减了因细胞数、细胞类型和其他实验变量而引起的数据变量。

主要应用

1. 活体成像。

2. 报告基因检测。

3. 检测细胞/组织内活性氧(ROS)水平:细胞和组织内的超氧阴离子和过氧化亚硝基阴离子能够增强腔肠素在酶非依赖性的氧化体系中自发荧光。

4. 高通量筛选。

5. 监测活细胞内钙离子水平。

产品描述

腔肠素f(Coelenterazine f)系天然腔肠素衍生物,是水母发光蛋白的底物。腔肠素f与天然腔肠素结构上的差别在于氟(F)原子替换R-1位酚基上的羟基。腔肠素f和水母蛋白被氧化后活化,生成腔肠素的亚稳态复合物。该复合物生成时间非常短,而天然腔肠素-水母蛋白复合物的生成反应很慢(60 min内仅有40%的天然腔肠素完成反应)。与天然腔肠素-水母蛋白复合物产生的光子总数相比,此复合物仅产生80%的光子能。

腔肠素f与Ca2+接触时,可快速且高产量的发光,产能强度是天然腔肠素的20倍。同时,腔肠素f具有最好的细胞渗透性。当需要极高的Ca2+检测灵敏度来研究水母蛋白再生实验时,推荐使用本底物。

产品性质

英文别名(English synonym)

CLZ-F;CLZN-F;Coelenterazine-Fluoride

CAS号(CAS NO.)

123437-16-1

分子式(Formula)

C26H20FN3O2

分子量(Molecular weight)

425.46

外观(Appearance)

黄色至褐色粉末

溶解性(Solubility)

溶于甲醇或者乙醇,不可溶于DMSO

纯度(Purity)(TLC)

>95%

结构(Structure)

腔肠素f 天然腔肠素衍生物|Coelenterazine f

运输和保存方法

冰袋运输。粉末-20℃避光干燥保存,最好保存在惰性气体环境下,避免接触空气。

腔肠素f工作液的配制

腔肠素f溶解:不溶于水。目前毒性最低的溶剂是100%乙醇,可配制浓度为0.1-1 mg/ml。加入pH低于7.0的酸性缓冲液(碱性pH会快速降解底物)稀释成低浓度工作液。切忌溶于DMSO。

腔肠素f保存:建议溶液现配现用!体外实验,需将稀释后的工作液室温放置20-30 min,方可稳定工作。该工作液可室温稳定放置3-4 h,有非常微弱的信号衰减发生。不建议储存液-20℃或更低温度保存,因为其高能量的二氧环丁酮结构即使在低温的情况下也会发生降解,导致荧光强度明显变弱。短时间保存条件:-70℃避光保存于塑料管内(溶液中不含有Ca2+),且有惰性气体保护。

注意事项

1.粉末最好使用惰性气体(氮气或氩气),在密封良好的塑料管中避光保存于-20℃,长期保存于-70℃。管内即使存在少量空气,可能造成腔肠素n氧化失活,造成在不同试验间的量化分析结果无法比较。

2.本品接触空气,水或者任何氧化试剂会不稳定。
3. 本产品仅作科研用途!

相关产品

产品名称

货号

规格

D-Luciferin,Sodium Salt D 荧光素钠盐 

40901ES01/02/03/08/10

0.1/0.5/1/5/10g

D-Luciferin,Potassium Salt D 荧光素钾盐

40902ES01/02/03/08

0.1/0.5/1/5 g

D-Luciferin Firefly, Free Acid D 萤火虫荧光素,游离酸

40903ES01/02/03

0.1/0.5/1 g

Coelenterazine Native 天然腔肠素

40904ES02/03/08

0.5/1/5 mg

Coelenterazine 400 a腔肠素 400a

40905ES02/03

0.5/1 mg

Coelenterazine h 腔肠素h

40906ES02/03/08/10

0.5/1 mg

Coelenterazine f 腔肠素f

40908ES02/03

0.5/1 μg

Coelenterazine cp 腔肠素cp

40909ES72

1×250 μg

Coelenterazine hcp 腔肠素hcp

40910ES72

1×250 μg

Coelenterazine n 腔肠素n

40911ES72

1×250 μg

Coelenterazine e 腔肠素e

40912ES02/03

0.5/1 mg

Coelenterazine 2-methyl 二甲基腔肠素

40913ES50

1×50 μg

Luciferase (firefly recombinant)

40914ES03

1 mg

HB181121

 

腔肠素f 天然腔肠素衍生物|Coelenterazine f

暂无内容

腔肠素f 天然腔肠素衍生物|Coelenterazine f

暂无内容

registech 腔肠素Coelenterazines


registech 腔肠素Coelenterazines

简要描述:registech 腔肠素Coelenterazines 订购信息

详细介绍

产品咨询

registech ,腔肠素,Coelenterazines,registech代理,registech腔肠素,registech Coelenterazines

腔肠素(Coelenterazines)

Description/产品描述
Coelenterazines是来自Renilla 、Aequorea和其它海洋生物的萤光素酶,通常用作真核细胞表达分析的细胞现象的指示剂或报告蛋白。海肾萤光素酶经常被用作转录调控的报告子,而apoaequorin 经常被用作钙指示剂。 
可以应用于以下相关分析研究:

  • 报告基因分析(Gene reporter assays,i.e., Luciferase)
  • 全动物分析(Whole animal assays,i.e. In vivo imaging analysis)
  • 生物化学分析(Biochemical assays, i.e., ELISA and Bioluminescence Resonance Energy Transfer [BRET])
  • 活细胞钙离子检测分析(Live-cell assays for the detection of calcium ions)
  • 细胞/组织中活性氧分析(assays for reactive oxygen species[ROS])

Coelenterazine(native): Renilla和apoaequorin的发光底物。 分子式:C26H21N3O3。 分子量:423.5 
Coelenterazine-h:其发光强度比野生型腔肠素高10-20 倍,是检测Ca2+浓度细微变化的有力工具。分子式:C26H21N3O2。分子量:407.5。
 


Quality / 质量

纯度(>95%),每批产品均经过发光效率检测。 
GMP工厂生产,HPLC检测,高信号,低背景干扰。 

Storage / 贮存
 
-20℃干燥保存,避光和氧气和Ca2+。 
不要溶解于DMSO中。 

Order / 订购

Product Size Regis # Price
Coelenterazine, Native 10mg 1-361204-200 3315
Coelenterazine, Native 1mg 1-361201-200 799
Coelenterazine-H 10mg 1-361214-200 4080
Coelenterazine-H 1mg 1-361211-200 1020