Encapsula NanoSciences脂质体*

 

 

上海金畔生物科技有限公司为庆祝成为Encapsula NanoSciences脂质体​中国代理特举办*活动,凡是在2017年6月22日到2017年9月1日期间购买产品送100元京东卡

Encapsula NanoSciences是一家专注于以纳米脂质体产品研发和生产的高科技公司,产品广泛应用于政府机构、制药企业、生物技术公司、医疗器械、食品安全等领域的科学研究和工业应用。Encapsula在纳米脂质体领域已有着数十年的苦心钻研,公司的科学家们有着丰富的脂质体产品研究和应用经验,通过合理设计脂质体组成的磷脂成分,可实现(1)特定条件下给药:即在特定温度时或特定pH时,或到达特定的组织或细胞类型时(通过识别、结合组织或细胞表面标志物或抗体,如抗肿瘤药物的靶向给药),同样也可回避某些特定的组织或细胞,其微细结构可实现鼻腔给药和吸入式肺部给药;(2)使难溶于水的药物均匀分布于水环境中,同样可使难溶于水的脂肪样成分如维生素、抗生素、抗氧化剂、香料成分等均匀分布在食物中;(3)与细胞膜高度相似的结构可用于细胞转染、药物的细胞膜穿透等研究;(4)保护内容物不被胃肠道消化酶、酸腐蚀;(5)延长维生素和抗氧化剂的保质期;(6)通过表面包被特定分子以增强药物的肠道吸收率;(7)通过携带荧光染料等识别颗粒实现药物或蛋白示踪。

上海金畔生物科技有限公司
400


企业:
上海市浦东新区晨阳路225弄东方现代商业广场46303(近东亭路

 

 

PBS体内巨噬细胞清除剂 PBS空白脂质体对照|Control Liposomes(PBS)

PBS体内巨噬细胞清除剂 PBS空白脂质体对照|Control Liposomes(PBS)

产品说明书

FAQ

COA

已发表文献

氯膦酸二钠是一种特异的杀伤巨噬细胞的药物,可以通过诱导巨噬细胞凋亡来去除组织中的巨噬细胞。目前市场上理想的用于高效巨噬细胞耗竭的试剂是氯膦酸二钠脂质体,氯膦酸二钠分子包被在脂质体胶囊中,具有活性高、稳定性高及使用方便等特点。静脉注射0.2 mL 氯膦酸二钠脂质体24 h后脾脏(红髓巨噬细胞)中巨噬细胞清除率达到80%-90%。

该产品是不含氯膦酸二钠的脂质体,脂质体中仅含有PBS,可用于对照组实验,以了解巨噬细胞的消耗是否归因于注射氯膦酸二钠脂质体后产生的效果。

 

产品信息

货号

40338ES08 / 40338ES10

规格

5 mL / 10 mL

 

组分信息

组分名称

40338ES08

40338ES10

Control Liposomes ( PBS )

5 mL

10 mL

 

储存条件

2~8℃保存,有效期6个月

注意:

不能冻存!使用前一定要充分混匀并恢复到室温。

 

使用说明

该产品是作为对照组试验进行使用,具体使用剂量应与氯膦酸二钠脂质体(货号:40337)使用剂量一致。

 

注意事项

1. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

2. 使用前一定要充分混匀并恢复到室温。

3. 本产品仅用于科研用途,禁止用于人身。

 

Ver.CN20230331

 

Q:体内巨噬细胞清除剂空白脂质体对照成分除了脂质体和pbs外还有其他成分吗

A: 没有

Q:请问买了巨噬细胞清除剂需要要买体内巨噬细胞清除剂空白脂质体对照吗?

A: 具体看实验设计,有的不需要

Q:体内巨噬细胞清除剂空白脂质体对照是聚乙二醇化脂质体吗?客户想要商用脂质体阿霉素类似的空白对照脂质体。

A:凑合可以两种产品的脂质体还是有点差别可以试试反正是对照脂质体的构成,每个厂家不一样好些客户就直接用PBS做对照,那个差的更远,但也是有参考意义

[1] Zhang Z, Chen C, Yang F, et al. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity [published online ahead of print, 2022 May 25]. Mol Cell. 2022;S1097-2765(22)00443-9. doi:10.1016/j.molcel.2022.05.009(IF:17.970)
[2] Cai J, Peng J, Zang X, et al. Mammary Leukocyte-Assisted Nanoparticle Transport Enhances Targeted Milk Trace Mineral Delivery [published online ahead of print, 2022 Jun 30]. Adv Sci (Weinh). 2022;e2200841. doi:10.1002/advs.202200841(IF:17.521)
[3] Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome. 2022;10(1):38. Published 2022 Mar 3. doi:10.1186/s40168-022-01227-w(IF:14.652)
[4] Sheng D, Ma W, Zhang R, et al. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization [published correction appears in J Immunother Cancer. 2022 Jun;10(6):]. J Immunother Cancer. 2022;10(5):e003793. doi:10.1136/jitc-2021-003793(IF:13.751)
[5] Zhang X, Hou L, Li F, et al. Piezo1-mediated mechanosensation in bone marrow macrophages promotes vascular niche regeneration after irradiation injury. Theranostics. 2022;12(4):1621-1638. Published 2022 Jan 16. doi:10.7150/thno.64963(IF:11.556)
[6] Sun Z, Huang W, Zheng Y, et al. Fpr2/CXCL1/2 Controls Rapid Neutrophil Infiltration to Inhibit Streptococcus agalactiae Infection. Front Immunol. 2021;12:786602. Published 2021 Nov 24. doi:10.3389/fimmu.2021.786602(IF:7.561)
[7] Zheng Y, Wang Z, Wei S, Liu Z, Chen G. Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer Lett. 2021;499:148-163. doi:10.1016/j.canlet.2020.11.034(IF:7.360)
[8] Qian S, Han X, Sha X, et al. Aqueous Extract of Cimicifuga dahurica Reprogramming Macrophage Polarization by Activating TLR4-NF-κB Signaling Pathway. J Inflamm Res. 2022;15:1027-1046. Published 2022 Feb 15. doi:10.2147/JIR.S345497(IF:6.922)
[9] Wang X, Li W, Jiang H, et al. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci. 2022;23(12):6442. Published 2022 Jun 9. doi:10.3390/ijms23126442(IF:5.924)
[10] Ma Y, Liang Y, Wang N, et al. Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. J Virol. 2019;93(22):e00978-19. Published 2019 Oct 29. doi:10.1128/JVI.00978-19(IF:5.103)
[11] Jiang Q, Li W, Zhu X, et al. Estrogen receptor β alleviates inflammatory lesions in a rat model of inflammatory bowel disease via down-regulating P2X7R expression in macrophages. Int J Biochem Cell Biol. 2021;139:106068. doi:10.1016/j.biocel.2021.106068(IF:5.085)
[12] Shan K, Qiu J, Zhou R, et al. RNA-seq identifies long non-coding RNAs as potential therapeutic targets for human corneal endothelial dysfunction under oxidative stress. Exp Eye Res. 2021;213:108820. doi:10.1016/j.exer.2021.108820(IF:3.467)

氯膦酸二钠是一种特异的杀伤巨噬细胞的药物,可以通过诱导巨噬细胞凋亡来去除组织中的巨噬细胞。目前市场上理想的用于高效巨噬细胞耗竭的试剂是氯膦酸二钠脂质体,氯膦酸二钠分子包被在脂质体胶囊中,具有活性高、稳定性高及使用方便等特点。静脉注射0.2 mL 氯膦酸二钠脂质体24 h后脾脏(红髓巨噬细胞)中巨噬细胞清除率达到80%-90%。

该产品是不含氯膦酸二钠的脂质体,脂质体中仅含有PBS,可用于对照组实验,以了解巨噬细胞的消耗是否归因于注射氯膦酸二钠脂质体后产生的效果。

 

产品信息

货号

40338ES08 / 40338ES10

规格

5 mL / 10 mL

 

组分信息

组分名称

40338ES08

40338ES10

Control Liposomes ( PBS )

5 mL

10 mL

 

储存条件

2~8℃保存,有效期6个月

注意:

不能冻存!使用前一定要充分混匀并恢复到室温。

 

使用说明

该产品是作为对照组试验进行使用,具体使用剂量应与氯膦酸二钠脂质体(货号:40337)使用剂量一致。

 

注意事项

1. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

2. 使用前一定要充分混匀并恢复到室温。

3. 本产品仅用于科研用途,禁止用于人身。

 

Ver.CN20230331

 

Q:体内巨噬细胞清除剂空白脂质体对照成分除了脂质体和pbs外还有其他成分吗

A: 没有

Q:请问买了巨噬细胞清除剂需要要买体内巨噬细胞清除剂空白脂质体对照吗?

A: 具体看实验设计,有的不需要

Q:体内巨噬细胞清除剂空白脂质体对照是聚乙二醇化脂质体吗?客户想要商用脂质体阿霉素类似的空白对照脂质体。

A:凑合可以两种产品的脂质体还是有点差别可以试试反正是对照脂质体的构成,每个厂家不一样好些客户就直接用PBS做对照,那个差的更远,但也是有参考意义

[1] Zhang Z, Chen C, Yang F, et al. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity [published online ahead of print, 2022 May 25]. Mol Cell. 2022;S1097-2765(22)00443-9. doi:10.1016/j.molcel.2022.05.009(IF:17.970)
[2] Cai J, Peng J, Zang X, et al. Mammary Leukocyte-Assisted Nanoparticle Transport Enhances Targeted Milk Trace Mineral Delivery [published online ahead of print, 2022 Jun 30]. Adv Sci (Weinh). 2022;e2200841. doi:10.1002/advs.202200841(IF:17.521)
[3] Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome. 2022;10(1):38. Published 2022 Mar 3. doi:10.1186/s40168-022-01227-w(IF:14.652)
[4] Sheng D, Ma W, Zhang R, et al. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization [published correction appears in J Immunother Cancer. 2022 Jun;10(6):]. J Immunother Cancer. 2022;10(5):e003793. doi:10.1136/jitc-2021-003793(IF:13.751)
[5] Zhang X, Hou L, Li F, et al. Piezo1-mediated mechanosensation in bone marrow macrophages promotes vascular niche regeneration after irradiation injury. Theranostics. 2022;12(4):1621-1638. Published 2022 Jan 16. doi:10.7150/thno.64963(IF:11.556)
[6] Sun Z, Huang W, Zheng Y, et al. Fpr2/CXCL1/2 Controls Rapid Neutrophil Infiltration to Inhibit Streptococcus agalactiae Infection. Front Immunol. 2021;12:786602. Published 2021 Nov 24. doi:10.3389/fimmu.2021.786602(IF:7.561)
[7] Zheng Y, Wang Z, Wei S, Liu Z, Chen G. Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer Lett. 2021;499:148-163. doi:10.1016/j.canlet.2020.11.034(IF:7.360)
[8] Qian S, Han X, Sha X, et al. Aqueous Extract of Cimicifuga dahurica Reprogramming Macrophage Polarization by Activating TLR4-NF-κB Signaling Pathway. J Inflamm Res. 2022;15:1027-1046. Published 2022 Feb 15. doi:10.2147/JIR.S345497(IF:6.922)
[9] Wang X, Li W, Jiang H, et al. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci. 2022;23(12):6442. Published 2022 Jun 9. doi:10.3390/ijms23126442(IF:5.924)
[10] Ma Y, Liang Y, Wang N, et al. Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. J Virol. 2019;93(22):e00978-19. Published 2019 Oct 29. doi:10.1128/JVI.00978-19(IF:5.103)
[11] Jiang Q, Li W, Zhu X, et al. Estrogen receptor β alleviates inflammatory lesions in a rat model of inflammatory bowel disease via down-regulating P2X7R expression in macrophages. Int J Biochem Cell Biol. 2021;139:106068. doi:10.1016/j.biocel.2021.106068(IF:5.085)
[12] Shan K, Qiu J, Zhou R, et al. RNA-seq identifies long non-coding RNAs as potential therapeutic targets for human corneal endothelial dysfunction under oxidative stress. Exp Eye Res. 2021;213:108820. doi:10.1016/j.exer.2021.108820(IF:3.467)

脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

产品说明书

FAQ

COA

已发表文献

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)

integralmolecular 脂质体技术

Integral Molecular是一家研究驱动的生物技术公司,为未被开发的膜蛋白靶标(包括GPCR,离子通道,转运蛋白和病毒包膜)创造创新技术和治疗性抗体。整合膜蛋白包括关键的治疗靶,但由于其结构复杂性和不能在构象完整状态下从脂质膜中除去而难以研究。在Integral Molecular,我们开发创新技术和产品,以满足这些苛刻但重要的目标。

脂质体技术

病毒样颗粒上的高浓度膜蛋白,用于药物和抗体的发现。

为什么我需要Lipoparticles用于抗体免疫和筛查?

脂质颗粒是病毒样颗粒(VLP),其天然构象含有高浓度的特异性膜蛋白。脂质颗粒直接从细胞表面捕获构象完整的膜蛋白,使得这些复合蛋白能够作为可溶性蛋白进行操作,用于抗体免疫和筛选。

Lipoparticle

 

 

为什么Lipoparticles是有效的抗原?

  • Lipoparticles在其天然细胞膜中显示正确折叠的膜蛋白。这导致引发和筛选构象抗体的能力。
  • 与细胞相比,脂质颗粒含有10-100倍浓度的膜蛋白(~50-200pmol / mg),导致强烈的免疫应答和抗体筛选的更好成功。

Lipoparticle应用包括:

  • 免疫接种
  • 噬菌体/酵母展示
  • 通过ELISA筛选抗体
  • 生物传感器的动力学分析
  • 放射性配体和荧光结合试验

 

定制脂质颗粒

定制脂质颗粒以包含任何选择的膜蛋白。使用质量控制指标评估每批脂质颗粒,以确保均一性,纯度和目标蛋白质完整性。数百种膜蛋白靶标已成功掺入脂质颗粒中。对于特定应用,可以用生物素或荧光修饰脂质颗粒。

ReadyReceptor Lipoparticles

预先验证的Lipoparticles含有优化的,高度表达的膜蛋白,可用于快速递送。ReadyReceptor Lipoparticles使用Custom Lipoparticle生产中使用的所有严格质量指标生成和验证。

GPCR

 

      Receptor

Description

Catalog No.

       A2AR

Alpha Adrenergic

RR-0910

       B2AR

Beta Andrenergic

RR-0574

      CR

Complement

RR-0362

       CCR1

Chemokine

RR-0968

        CCR2b

Chemokine

RR-0125

        hCCR5

Chemokine

RR-0190

        mCCR5

Chemokine

RR-0835

      rhCCR5

Chemokine

RR-0895

      CCR6

Chemokine

RR-0822

     CCR10

Chemokine

RR-0193

     CXCR2

Chemokine

RR-0943

     CXCR3

Chemokine

RR-0132

     CXCR4

Chemokine

RR-0830

     CXCR7

Chemokine

RR-0656

     mCXCR4

Chemokine

RR-2194

     GLP-1R

Glucagon-like peptide-1 Receptor

RR-1090

      GCGR

Glucagon Receptor

RR-0999

      GAL1 Receptor

Neuropeptide Receptor

RR-1067

      5-HT2C

Serotonin Receptor

RR-1498

       FZD4

Wnt Pathway

RR-1302

 

 

     Ion Channel

      Receptor

Description

Catalog No.

      HV1

Voltage Gated H+

RR-0678

      TRPC4

Nonspecific Cation Channel

RR-1054

       TRPM4

Nonspecific Cation Channel

RR-1333

       K2P1.1

Potassium Channel

RR-1225

       K2P4.1

Potassium Channel

RR-1331

       P2X2

ATP Purinoceptor

RR-1181

 

 

      RTK

     Receptor

Description

Catalog No.

      ALK2

Activin Receptor

RR-0850

 

      1-TM

    Receptor

Description

Catalog No.

     ACVR1

Activin Receptor, Type 1

RR-0850

     CD19

B-Cell Activation

RR-0553

     CD27

B-Cell Activation

RR-0655

    DC-SIGN

Lectin

RR-0057

    DC-SIGNR

Lectin

RR-0056

    LRP6

Wnt Pathway

RR-0853

    hTL1A

TNF Ligand

RR-0819

    mTL1A

TNF Ligand

RR-0817

    DR5

TNF-family Receptor

RR-0818

    ST2L

IL-1 Receptor Family

RR-0653

 

    4-TM

    Receptor

Description

Catalog No.

     CD81

Hepatitis C Attachment

RR-0341

    CD20

B-Cell Activation

RR-1179

    Claudin-1

Tight Junction

RR-0825

    Claudin-3

Tight Junction

RR-0733

    Claudin-4

Tight Junction

RR-0686

 

    Viral Protein

    Receptor

Description

Catalog No. 

    RSV-F

Respiratory Syncytial Virus

RR-0891

      Influenza M2           A/Udorn/307/1972

Ion Channel

RR-0929

    Influenza M2     A/HK/156/1997

Ion Channel

RR-0179

  Chikungunya Virus

Viral Envelope

RR-0945

    Ross River Virus

Viral Envelope

RR-1136

 

    Transporter

     Receptor

Description

Catalog No. 

     GLUT1

Glucose Transporter

RR-0777

 

 

Sample Kits

Lipoparticle sample kits containing CXCR4, CCR5 or CD20 are available for overnight delivery to enable application optimization and small-scale testing.

样品套件

含有CXCR4,CCR5或CD20的Lipoparticle样品试剂盒可用于隔夜输送,以实现应用优化和小规模测试。

 

Sample Kit

Class

Cat. No

Size

CXCR4

GPCR

LEV-101, LEV-101B

400 U

CCR5

GPCR

LEV-102, LEV-102B

400 U

CD20

GPCR

LEV-103, LEV-103B

400 U

脂质颗粒可以用(B)生物素或(F)荧光修饰。

 

 

上海金畔生物科技有限公司是实验试剂一站式采购服务商

1:强大的进口辐射能力,血清、抗体、耗材、大部分限制进口品等。

2:产品种类齐全,经营超过700多个品牌,基本涵盖所有生物实验试剂耗材。

3:提供加急服务,货品一般1-2周到货。

4:富有竞争力的价格优势,绝大部分价格有优势。

5:多年积累良好的信誉,大部分客户提供货到付款服务。客户包括清华、北大、交大、复旦、中山等100多所高校,ROCHE,阿斯利康、国药、fisher等药企。

6:我们还是Santa,Advanced Biotechnologies Inc,Athens Research & Technology,bangs,BBInternational,crystalchem,dianova,FD Neurotechnologies,Inc. FormuMax Scientific,Inc, Genebridege, Glycotope Biotechnology GmbH; iduron,Innovative Research of America, Ludger, neuroprobe,omicronbio, Polysciences,prospecbi, QA-BIO,quickzyme,RESEARCH DIETS,INC,sterlitech;sysy,TriLink BioTechnologies,Inc;worthington-biochem,zyagen等几十家国外公司代理。

7:我们还是invitrogen,qiagen,MiraiBioam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等*批发,欢迎合作。

 

clodrosome 8901 脂质体说明书

Encapsula NanoSciences是一家美国专业生物纳米技术公司,致力于在学术和工业领域的客户和合作伙伴提供研究,开发,知识产权和制造专业知识,以生产脂质纳米粒子(也称为脂质体)。封囊通常提供脂质体包封的化合物的定制实验室规模的制剂。

封装是用于抗体和肽缀合的表面活性脂质体(Immunosome),Clodronate脂质体(Clodronome),Clodrosome(Encapsome),多柔比星脂质体(Doxosome),DNA和RNA脂质体(Genesome),荧光  脂质体氟脂质体),冷冻干燥的ATP脂质体(ATPsome),用作人造细胞模型(Cellsome)的脂质体的各种制剂和脂质体包封的抗肿瘤药物。

Encapsula还提供了可以在皮肤病学和化妆品(可以使用的脂质体的各种制剂Cosmesome),营养补充剂,如姜黄素脂质体(Curcusome)和肌醇脂质体(Inosisome),和营养补充剂的宠物(Taurosome)。

Clodrosome  ® ,Encapsome  ® 和Fluoroliposome  ® 是Encapsula纳米科学LLC的注册商标。12多年来,Encapsula为数百所大学,研究机构,政府实验室和生物技术/制药公司提供巨噬细胞消耗试剂盒和巨噬细胞消耗的定制配方。

Standard macrophage depletion kit

(composed of one vial of Clodrosome® and one vial of Encapsome®)

SKU: 8901

Select quantity or request quotation for larger quantities

Clodrosome巨噬细胞消耗试剂盒

  • 包含与大多数已发表的枯竭研究中使用的类似的未修饰的多层脂质体
  • 脂质体大小范围(0.3-3μm)对于立即吞噬细胞的识别和摄取是*的
  • 试剂盒包含相同体积的每个试剂,包装在带有多剂量小瓶适配器的塞子玻璃小瓶中
  • 选择荧光试剂盒可以体外体内观察对照脂质

每个Clodrosome巨噬细胞消耗试剂盒包含Clodrosome和等体积的对照脂质体。

Further details on each reagent is available by clicking on “More Info” below its image.

Clodrosome® (Liposomal Clodronate)

Clodrosome®(脂质体氯膦酸盐)

  mg/ml mM
Clodronate Disodium Salt 5 17
L-α-Phosphatidylcholine 18.8  24
Cholesterol  4.2  11
Suspended in Phosphate Buffered Saline at pH 7.4
  • Clodronate encapsulated inside multilamellar liposome aqueous spaces
  • Extruded through 2 µm membranes to ensure that liposomes easily pass through lung capillaries
  • Prepared and packaged under sterile conditions

Control liposomes complete the Clodrosome Macrophage Depletion Kit.

Select either Encapsome control liposomes (Standard Clodrosome Kit) or

Fluoroliposome fluorescent control liposomes (Fluorescent Clodrosome Kit) described below.

See FAQ (Question 1) for more information on the use of fluorescent liposomes.

Encapsome® (Control Liposomes)

Encapsome®(对照脂质体)

  mg/ml mM
L-α-Phosphatidylcholine 18.8 24
Cholesterol 4.2 11
Suspended in Phosphate Buffered Saline at pH 7.4
  • Prepared identically to Clodrosome except that clodronate is not added
  • Required control since phagocytes can respond to liposome uptake
  • Extruded through 2 µm membranes to ensure that liposomes easily pass through lung capillaries
  • Prepared and packaged under sterile conditions

Fluoroliposome®-DiI (Fluorescent Control Liposomes)

Fluoroliposome®-DiI (荧光对照脂质体)

  mg/ml mM
L-α-Phosphatidylcholine 18.8 24
Cholesterol 4.2 11
DiI (lipophilic fluorescent dye: ex/em~550/580 nm) 0.0625 0.065
Suspended in Phosphate Buffered Saline at pH 7.4
  • Prepared identically to Clodrosome (without clodronate; with fluorophore)
  • Required control since phagocytes can respond to liposome uptake
  • May be tracked by fluorescence methods (confocal microscopy, FACS, etc.)
  • Extruded through 2 µm membranes to ensure that liposomes easily pass through lung capillaries
  • Prepared and packaged under sterile conditions

Fluoroliposome®-DiO (Fluorescent Control Liposomes)

Fluoroliposome®-DiO (荧光对照脂质体)

  mg/ml mM
L-α-Phosphatidylcholine 18.8 24
Cholesterol 4.2 11
DiO (lipophilic fluorescent dye: ex/em~484/501 nm) 0.0625 0.071
Suspended in Phosphate Buffered Saline at pH 7.4
  • Prepared identically to Clodrosome (without clodronate; with fluorophore)
  • Required control since phagocytes can respond to liposome uptake
  • May be tracked by fluorescence methods (confocal microscopy, FACS, etc.)
  • Extruded through 2 µm membranes to ensure that liposomes easily pass through lung capillaries
  • Prepared and packaged under sterile conditions

Fluoroliposome®-DiD (Fluorescent Control Liposomes)

Fluoroliposome®-DiD (荧光对照脂质体).

  mg/ml mM
L-α-Phosphatidylcholine 18.8 24
Cholesterol 4.2 11
DiD (lipophilic fluorescent dye: ex/em~648/680 nm) 0.00625 0.0065
Suspended in Phosphate Buffered Saline at pH 7.4
  • Prepared identically to Clodrosome (without clodronate; with fluorophore)
  • Required control since phagocytes can respond to liposome uptake
  • May be tracked by fluorescence methods (confocal microscopy, FACS, etc.)
  • Extruded through 2 µm membranes to ensure that liposomes easily pass through lung capillaries
  • Prepared and packaged under sterile conditions

 

 clodrosome  8901   Standard macrophage depletion kit(composed of one vial of Clodrosome:emoji: and one vial of Encapsome:emoji:) 5ML  大量现货

 

clodronateliposomes脂质体2020年价格表

 

clodronateliposomes脂质体2020年价格表

 

货号 品名   规格   价格  
C-005-005 Clodronate Liposomes 5 ml 4100
C-010-010 Clodronate Liposomes 10 ml 6400
C-015-015 Clodronate Liposomes 15 ml 9000
C-020-020 Clodronate Liposomes 20 ml 11500
C-025-025 Clodronate Liposomes 25 ml 13800
C-030-030 Clodronate Liposomes 30 ml 16100
C-040-040 Clodronate Liposomes 40 ml 20700
C-050-050 Clodronate Liposomes 50 ml 25300
C-060-060 Clodronate Liposomes 60 ml 28700
C-070-070 Clodronate Liposomes 70 ml 32200
C-080-080 Clodronate Liposomes 80 ml 35600
C-090-090 Clodronate Liposomes 90 ml 38000
C-100-100 Clodronate Liposomes 100 ml 40300
C-150-150 Clodronate Liposomes 150 ml 60400
C-200-200 Clodronate Liposomes 200 ml 80500
C-250-250 Clodronate Liposomes 250 ml 100600
C-300-300 Clodronate Liposomes 300 ml 120700
C-350-350 Clodronate Liposomes 350 ml 140900
C-400-400 Clodronate Liposomes 400 ml 161000
C-450-450 Clodronate Liposomes 450 ml 181100
C-500-500 Clodronate Liposomes 500 ml 201200
P-005-005 Control Liposomes (PBS) 5 ml 1700
P-010-010 Control Liposomes (PBS) 10 ml 3000
P-015-015 Control Liposomes (PBS) 15 ml 4100
P-020-020 Control Liposomes (PBS) 20 ml 5100
P-025-025 Control Liposomes (PBS) 25 ml 6000
P-030-030 Control Liposomes (PBS) 30 ml 6900
P-040-040 Control Liposomes (PBS) 40 ml 8300
P-050-050 Control Liposomes (PBS) 50 ml 9700
P-060-060 Control Liposomes (PBS) 60 ml 11000
P-070-070 Control Liposomes (PBS) 70 ml 12200
P-080-080 Control Liposomes (PBS) 80 ml 13300
P-090-090 Control Liposomes (PBS) 90 ml 14500
P-100-100 Control Liposomes (PBS) 100 ml 15600
P-150-150 Control Liposomes (PBS) 150 ml 23500
P-200-200 Control Liposomes (PBS) 200 ml 31300
P-250-250 Control Liposomes (PBS) 250 ml 39100
P-300-300 Control Liposomes (PBS) 300 ml 46900
P-350-350 Control Liposomes (PBS) 350 ml 54700
P-400-400 Control Liposomes (PBS) 400 ml 62600
P-450-450 Control Liposomes (PBS) 450 ml 70400
P-500-500 Control Liposomes (PBS) 500 ml 78200
I-005-005 Fluorescent Dil Liposomes 5 ml 2400
I-010-010 Fluorescent Dil Liposomes 10 ml 4400
I-015-015 Fluorescent Dil Liposomes 15 ml 6200
I-020-020 Fluorescent Dil Liposomes 20 ml 7600
I-025-025 Fluorescent Dil Liposomes 25 ml 9000
I-030-030 Fluorescent Dil Liposomes 30 ml 10400
I-040-040 Fluorescent Dil Liposomes 40 ml 12400
I-050-050 Fluorescent Dil Liposomes 50 ml 14500
I-060-060 Fluorescent Dil Liposomes 60 ml 16600
I-070-070 Fluorescent Dil Liposomes 70 ml 18400
I-080-080 Fluorescent Dil Liposomes 80 ml 20200
I-090-090 Fluorescent Dil Liposomes 90 ml 22000
I-100-100 Fluorescent Dil Liposomes 100 ml 23900
I-150-150 Fluorescent Dil Liposomes 150 ml 35900
I-200-200 Fluorescent Dil Liposomes 200 ml 47800
I-250-250 Fluorescent Dil Liposomes 250 ml 59800
I-300-300 Fluorescent Dil Liposomes 300 ml 71700
I-350-350 Fluorescent Dil Liposomes 350 ml 83700
I-400-400 Fluorescent Dil Liposomes 400 ml 95700
I-450-450 Fluorescent Dil Liposomes 450 ml 107600
I-500-500 Fluorescent Dil Liposomes 500 ml 119600
CP-005-005 Clodronate Liposomes & Control Liposomes (PBS) 5 ml 5800
CP-010-010 Clodronate Liposomes & Control Liposomes (PBS) 10 ml 9400
CP-015-015 Clodronate Liposomes & Control Liposomes (PBS) 15 ml 13100
CP-020-020 Clodronate Liposomes & Control Liposomes (PBS) 20 ml 16600
CP-025-025 Clodronate Liposomes & Control Liposomes (PBS) 25 ml 19800
CP-030-030 Clodronate Liposomes & Control Liposomes (PBS) 30 ml 23000
CP-040-040 Clodronate Liposomes & Control Liposomes (PBS) 40 ml 29000
CP-050-050 Clodronate Liposomes & Control Liposomes (PBS) 50 ml 35000
CP-060-060 Clodronate Liposomes & Control Liposomes (PBS) 60 ml 39700
CP-070-070 Clodronate Liposomes & Control Liposomes (PBS) 70 ml 44400
CP-080-080 Clodronate Liposomes & Control Liposomes (PBS) 80 ml 48900
CP-090-090 Clodronate Liposomes & Control Liposomes (PBS) 90 ml 52500
CP-100-100 Clodronate Liposomes & Control Liposomes (PBS) 100 ml 55900
CP-150-150 Clodronate Liposomes & Control Liposomes (PBS) 150 ml 83900
CP-200-200 Clodronate Liposomes & Control Liposomes (PBS) 200 ml 111800
CP-250-250 Clodronate Liposomes & Control Liposomes (PBS) 250 ml 139700
CP-300-300 Clodronate Liposomes & Control Liposomes (PBS) 300 ml 167600
CP-350-350 Clodronate Liposomes & Control Liposomes (PBS) 350 ml 195600
CP-400-400 Clodronate Liposomes & Control Liposomes (PBS) 400 ml 223600
CP-450-450 Clodronate Liposomes & Control Liposomes (PBS) 450 ml 251500
CP-500-500 Clodronate Liposomes & Control Liposomes (PBS) 500 ml 279400
CI-005-005 Clodronate Liposomes &Fluorescent Dil Liposomes 5 ml 6500
CI-010-010 Clodronate Liposomes &Fluorescent Dil Liposomes 10 ml 10800
CI-015-015 Clodronate Liposomes &Fluorescent Dil Liposomes 15 ml 15200
CI-020-020 Clodronate Liposomes &Fluorescent Dil Liposomes 20 ml 19100
CI-025-025 Clodronate Liposomes &Fluorescent Dil Liposomes 25 ml 22800
CI-030-030 Clodronate Liposomes &Fluorescent Dil Liposomes 30 ml 26500
CI-040-040 Clodronate Liposomes &Fluorescent Dil Liposomes 40 ml 33100
CI-050-050 Clodronate Liposomes &Fluorescent Dil Liposomes 50 ml 39800
CI-060-060 Clodronate Liposomes &Fluorescent Dil Liposomes 60 ml 45300
CI-070-070 Clodronate Liposomes &Fluorescent Dil Liposomes 70 ml 50600
CI-080-080 Clodronate Liposomes &Fluorescent Dil Liposomes 80 ml 55800
CI-090-090 Clodronate Liposomes &Fluorescent Dil Liposomes 90 ml 60000
CI-100-100 Clodronate Liposomes &Fluorescent Dil Liposomes 100 ml 64200
CI-150-150 Clodronate Liposomes &Fluorescent Dil Liposomes 150 ml 96300
CI-200-200 Clodronate Liposomes &Fluorescent Dil Liposomes 200 ml 128300
CI-250-250 Clodronate Liposomes &Fluorescent Dil Liposomes 250 ml 160400
CI-300-300 Clodronate Liposomes &Fluorescent Dil Liposomes 300 ml 192400
CI-350-350 Clodronate Liposomes &Fluorescent Dil Liposomes 350 ml 224600
CI-400-400 Clodronate Liposomes &Fluorescent Dil Liposomes 400 ml 256700
CI-450-450 Clodronate Liposomes &Fluorescent Dil Liposomes 450 ml 288700
CI-500-500 Clodronate Liposomes &Fluorescent Dil Liposomes 500 ml 320800

 

 

clodronateliposomes脂质体使用说明书

clodronateliposomes脂质体使用说明书

 

产品描述

磷脂双层由磷脂酰胆碱和胆固醇组成。将所有脂质体制剂悬浮在无菌磷酸盐缓冲盐水(PBS)中:

– 10 mM的Na2HPO4;
– 10毫米NaH2PO4;
– 140毫米氯化钠。

我们所有的脂质体均带负电荷,因此不会一起阻塞。悬浮液中的脂质体没有大小,这意味着它也包含越来越大的脂质体(大3微米)。平均而言,脂质体的大小为1.7微米。

氯膦酸盐脂质体:人工制备的脂质囊泡的悬浮液,包裹了氯膦酸盐。悬浮液中氯膦酸盐的浓度约为。5毫克/毫升 氯膦酸盐以CH2Na2Cl2O6P2·5 H2O的形式封装在脂质体囊泡中。

PBS脂质体:人工制备的脂质囊泡的悬浮液,其中包裹了PBS水溶液。这些不含氯膦酸盐,可用于对照实验。

荧光DiI脂质体:人工制备的脂质囊泡的悬浮液,其中包封了PBS水溶液,并用荧光染料DiI标记。它们不含氯膦酸盐,可用于研究通过特定给药途径注射的脂质体是否能够到达要研究的巨噬细胞。

 

储存和使用说明

到达脂质体后,应将其储存在4 – 8ºC(或39 – 47ºF)之间。脂质体悬浮液不得冷冻,也不要暴露于高温下。这可能会对磷脂双层造成干扰,可能导致氯膦酸盐从脂质体中泄漏出来。

给药前,首先使脂质体达到室温,然后轻轻摇动或搅拌悬浮液。一段时间后,脂质体易于沉淀,导致小瓶中的分布不均匀。当注射花费太多时间时,脂质体甚至可能在注射器中沉淀。如果使用同一注射器注射多只动物,可能会导致剂量不同。

不建议稀释悬浮液,但如有必要,请使用PBS或盐水。

我们建议客户在发货后16周内使用脂质体制剂。强烈建议不要在到期日期之后使用。在此期间之后,污染的风险会增加,并且可能会发生轻微的功能丧失。

作用机理

巨噬细胞在免疫和非免疫防御机制中起重要作用。它们是抵御渗透到脊椎动物体内的细菌,病毒和其他形式的微生物污染的首道防线。巨噬细胞是大型细胞,几乎存在于所有身体组织中,它们可以具有不同的形式和名称(例如库普弗细胞,肺泡巨噬细胞,小胶质细胞,破骨细胞,红髓巨噬细胞)。巨噬细胞“清除”,它们摄入并消化可能是潜在病原体的所有异物,微生物,癌细胞和细胞碎片。该过程称为吞噬作用。巨噬细胞主要通过可溶性分子如细胞因子和趋化因子的介导来进一步调节许多非吞噬细胞的功能。他们参与先天免疫,

脂质体是人工制备的球体,由同心磷脂双层组成。当磷脂分散在水中时,亲水性头部将构成脂质体的两个外部部分,而疏水性脂肪酸基团将构成内部部分(见图1)。水室分隔双层,亲水分子可以溶解在其中,形成脂质体包封的分子。氯膦酸盐(二氯亚甲基双膦酸酯或Cl2MBP)是一种亲水性分子,可以封装在磷脂双层中。游离氯膦酸盐不易穿过细胞膜,并通过肾脏系统从循环中迅速清除(即数分钟内)。但是,氯膦酸盐脂质体包埋在脂质体中时,会被巨噬细胞吞噬,无法逃脱(见图2)。磷脂双层被溶酶体磷脂酶消化,而氯膦酸盐未被消化并且保留在巨噬细胞中。巨噬细胞摄入的磷脂双层和脂质体越多,在巨噬细胞内积累的氯膦酸盐越多。超过一定的细胞内浓度,氯膦酸盐将通过启动程序性细胞死亡(即凋亡)来消除巨噬细胞。

图1.氯膦酸盐脂质体的示意图。囊泡由同心的磷脂双层构成,被水性隔室隔开。双层由亲水和疏水基团组成。将氯膦酸盐(在此以黑色方块表示)溶解在水溶液中并封装在脂质体内。

 

图2.巨噬细胞对氯膦酸盐脂质体的摄取和消化示意图。巨噬细胞通过胞吞作用摄入氯膦酸盐脂质体,然后与含有磷脂酶的溶酶体(L)融合(箭头)。磷脂酶破坏的磷脂双层越多,在巨噬细胞内释放的氯膦酸盐(黑色方块)越多。巨噬细胞终通过凋亡被杀死。(N =巨噬细胞核)。

 
因此,氯膦酸盐脂质体可用于通过消耗巨噬细胞来研究巨噬细胞功能。例如,它们可以应用于各种自身免疫性疾病,移植,神经系统疾病和基因治疗的模型。氯膦酸盐脂质体只有在可以达到的情况下才能耗尽巨噬细胞。一些组织可以形成脂质体的屏障。通过选择氯膦酸盐脂质体的正确给药途径,可以耗尽特定的器官或组织的巨噬细胞。有关管理协议的更多信息,请单击此处。

PBS脂质体主要用于对照实验。但是,这些也可以在某些时间段内通过饱和来阻止吞噬作用。因此,PBS脂质体不能代表正常健康的,未阻断的,未抑制的和未活化的巨噬细胞的对照实验。当比较氯膦酸盐脂质体和PBS脂质体的作用时,其作用因此可能小于预期。

有关更多信息,请参见:

– Van Rooijen,N.和Sanders,A.(1994)。脂质体介导的巨噬细胞耗竭:作用机理,脂质体制备和应用。免疫学杂志,174(1-2),83-93。
– Van Rooijen,N.,Sanders,A.和van den Berg,TK(1996)。脂质体介导的氯膦酸盐和丙am的细胞内递送诱导的巨噬细胞凋亡。免疫学杂志,193(1),93-99。

 

ProFoldin新品!用于DNA和RNA纳米颗粒的脂质体

用于DNA和RNA纳米颗粒的ProFoldin脂质体


ProFoldin公司是一家专门从事生物技术产品研发、生产和销售的企业。公司提供各种生物技术相关的产品,包括蛋白质结晶相关试剂、脂质体、酶联免疫吸附试剂盒(ELISA试剂盒)、免疫印迹试剂盒(Western Blot试剂盒)等。

产品介绍:

携带正电荷的现成脂质体可以制造DNA或RNA纳米颗粒。用于DNA和RNA纳米颗粒的DPPC脂质体(目录号:DCDA20)具有DPPC:胆固醇:十二胺= 6.6:3.4:1的脂质组成。空脂质体的平均大小为120纳 米。当以脂质/RNA(或DNA)= 33的质量比加载DNA或RNA时,脂质体的大小几乎增加了一倍。DNA或 RNA的加载是通过一个简单的孵育步骤进行的。DNA或RNA负载脂质体是DNA或RNA纳米颗粒,可用于生 物科学研究和药物发现项目中的各种应用。




用于DNA和RNA纳米颗粒的DPPC脂质体(目录号: DCDA20)在水中含有2毫升10 mg/ml总脂质(DPPC:胆固醇:十二胺= 6.6:3.4:1)。脂质体可以用水稀释。它应该存储在2OC到8OC。请不要冷冻脂质体。


DNA或RNA负载

以下是推荐的DNA或RNA加载条件。可以根据需要修改条件,如培养温度和时间,以及DNA或RNA浓度

将5µl 1µg/µl DNA或RNA混合于TE缓冲液(10 mM Tris-HCl,pH 7,1 mM EDTA)和45µl脂质体(3.7mg/ml)在水中。在室温下孵育3小时。将样品储存在2-8OC.


相关产品:

货号 品名 品牌
PHPC100AS Ready-to-loadPEGylatedHSPCLiposomeswithAmmoniumSulfate-100mg ProFoldin
DPC100AS Ready-to-loadDPPCLiposomeswithAmmoniumSulfate-100mg ProFoldin
SLP20 Spin-columnsforLiposomePurification ProFoldin
LDE10 LiposomeDrugEncapsulationAssayKit ProFoldin
LDD05 LiposomeDrugDissolutionAssayKit ProFoldin
SPS20 LiposomePlasmaStabilityTestKit ProFoldin
PHPC002DX PEGylatedLiposomalDoxorubicin-2mg ProFoldin
PHPC002CP PEGylatedLiposomalCiprofloxacin-2mg ProFoldin
DPC002CP LiposomalCiprofloxacin-2mg ProFoldin
DPC001AO LiposomalAcridineOrangeDye ProFoldin
DPC001FL LiposomalFluoresceinDye ProFoldin
DPC002CA LiposomalCalcium ProFoldin
DPC002MG LiposomalMagnesium ProFoldin
PHPC002K PEGylatedLiposomalPotassium ProFoldin
PHPC002ZN PEGylatedLiposomalZinc ProFoldin
PHPC002CU PEGylatedLiposomalCopper ProFoldin
PHPC002MN PEGylatedLiposomalManganese ProFoldin
PHPC002CO PEGylatedLiposomalCobalt ProFoldin
PHPC002SF PEGylatedLiposomalSulfate ProFoldin
PHPC002PS PEGylatedLiposomalPhosphate ProFoldin
PHPC002CL PEGylatedLiposomalChloride ProFoldin
PHPC002KI PEGylatedLiposomalIodide ProFoldin
PHPC002HS PEGylatedLiposomalHistidine ProFoldin























encapsula 荧光脂质体

encapsula 荧光脂质体(Fluoroliposome®)

 

  • 荧光脂质体 – 用于追踪和检测的脂质体
    • 含有亲脂示踪剂的脂质体
      • 含有亲脂示踪剂的负电荷荧光脂质体
        • 磷脂酰甘油脂质体
          • 基于PG的Fluoroliposome®用于跟踪和检测
        • 磷脂酰丝氨酸脂质体
          • 基于PS的Fluoroliposome®用于跟踪和检测
      • 含有亲脂示踪剂的中性荧光脂质体
        • 用于追踪和检测的中性Fluoroliposome®
      • 含有亲脂示踪剂的带正电荷的荧光脂质体
        • 基于DOTAP的Fluoroliposome®用于跟踪和检测
    • 表面活性脂质体用于活性染料的共轭
      • 负电荷荧光脂质体用于活性染料的共轭
        • 磷脂酰甘油脂质体
          • 基于PG的Fluoroliposome®-DBCO用于跟踪和检测
          • 基于PG的Fluoroliposome®-Azide用于跟踪和检测
        • 磷脂酰丝氨酸脂质体
          • 基于PS的Fluoroliposome®-DBCO用于跟踪和检测
          • 基于PS的Fluoroliposome®-Azide用于跟踪和检测
      • 中性荧光脂质体用于活性染料的共轭
        • 用于追踪和检测的中性荧光脂质体 – 叠氮化物
        • 中性Fluoroliposome®-DBCO用于跟踪和检测
      • 带正电荷的荧光脂质体用于活性染料的共轭
        • 基于DOTAP的Fluoroliposome®-DBCO用于跟踪和检测
        • 基于DOTAP的Fluoroliposome®-Azide用于跟踪和检测
  • 荧光脂质体 – 用于融合实验的脂质体
    • 脂质体共包封NBD /罗丹明
      • 负电荷荧光脂质体共包封NBD /罗丹明
        • 磷脂酰甘油脂质体
          • DOPC:DOPG脂质体共包封NBD /罗丹明
          • POPC:Chol:POPG脂质体共包封NBD /罗丹明
          • POPE:POPG脂质体共包封NBD /罗丹明
        • 磷脂酰丝氨酸脂质体
          • DOPC:DOPS脂质体共包封NBD /罗丹明
          • POPE:POPS:POPC脂质体共包封NBD /罗丹明
      • 中性荧光脂质体共包封NBD /罗丹明
        • DOPC脂质体共包封NBD /罗丹明
      • 带正电荷的荧光脂质体共包封NBD /罗丹明
        • DOTAP脂质体共包封NBD /罗丹明
    • 包封十八烷基罗丹明B的脂质体
      • 含有十八烷基罗丹明B的负电荷荧光脂质体
        • 磷脂酰甘油脂质体
          • POPC:Chol:含有十八烷基罗丹明B自猝灭浓度的POPG脂质体
          • DOPC:含有十八烷基罗丹明B自猝灭浓度的DOPG脂质体
          • POPE:含有十八烷基罗丹明B自猝灭浓度的POPG脂质体
        • 磷脂酰丝氨酸脂质体
          • DOPC:含有十八烷基罗丹明B自猝灭浓度的DOPS脂质体
          • POPE:POPS:含有十八烷基罗丹明B自猝灭浓度的POPC脂质体
      • 包封十八烷基罗丹明B的中性荧光脂质体
        • 含有十八烷基罗丹明B自猝灭浓度的DOPC脂质体
      • 包封十八烷基罗丹明B的带正电荷的荧光脂质体
        • DOTAP脂质体含有十八烷基罗丹明B的自猝灭浓度
  • 荧光脂质体 – 用于孔形成实验的脂质体
    • 含有各种大小的葡聚糖-FITC染料的脂质体
      • 含有不同大小的葡聚糖-FITC染料的负电荷荧光脂质体
        • 磷脂酰甘油脂质体
          • POPE:含有葡聚糖-FITC染料的POPG脂质体
          • POPC:Chol:含有葡聚糖-FITC染料的POPG脂质体
          • DOPC:含有葡聚糖-FITC染料的DOPG脂质体
        • 磷脂酰丝氨酸脂质体
          • POPE:POPS:含有葡聚糖-FITC染料的POPC脂质体
          • DOPC:含有葡聚糖-FITC染料的DOPS脂质体
      • 含有不同大小的葡聚糖-FITC染料的中性荧光脂质体
        • 含有葡聚糖-FITC染料的DOPC脂质体
      • 含有不同大小的葡聚糖-FITC的带正电荷的荧光脂质体
        • 含有葡聚糖-FITC染料的DOTAP脂质体
  • 荧光脂质体 – 用于巨噬细胞摄取的脂质体
    • 标准荧光控制
      • Fluoroliposome®-DIA
      • Fluoroliposome®结果来自
      • Fluoroliposome®-的DiI
      • Fluoroliposome®-DIO
      • Fluoroliposome®-DIR
      • 三色Fluoroliposome®试剂盒
      • 五色Fluoroliposome®试剂盒
    • 甘露糖化荧光控制
      • M-Fluoroliposome®-DIA
      • M-Fluoroliposome®-DiD的
      • M-Fluoroliposome®-的DiI
      • M-Fluoroliposome®-DIO
      • M-Fluoroliposome®-DIR
      • 三色甘露糖基Fluoroliposome®试剂盒
      • 五色甘露糖化Fluoroliposome®试剂盒
  • 荧光脂质体 – 表面反应性脂质体(IMMUNOFLUOR™)
    • 胺反应性荧光脂质体
      • ImmunoFluor™-NHS(聚乙二醇化)(插入后)
      • ImmunoFluor™-Glutaryl(非PEG化)
      • ImmunoFluor™ – 琥珀酰(非聚乙二醇化)
      • ImmunoFluor™-Dodecanyl(非PEG化)
      • ImmunoFluor™ – 琥珀酰(PEG化)
      • ImmunoFluor™-Cyanur(聚乙二醇化)
      • ImmunoFluor™ – 羧酸(聚乙二醇化)
    • 生物素化的荧光脂质体
      • ImmunoFluor™ – 生物素基帽(非PEG化)
      • ImmunoFluor™-Biotin(非PEG化)
      • ImmunoFluor™-Biotin(聚乙二醇化)
    • 羧酸反应荧光脂质体
      • ImmunoFluor™-Amine(聚乙二醇化)
      • ImmunoFluor™ – 十二烷基胺(非PEG化)
      • ImmunoFluor™-Caproylamine(非PEG化)
    • DBCO或叠氮化物反应荧光脂质体(点击化学)
      • ImmunoFluor™-Azide(非PEG化)
      • ImmunoFluor™-DBCO(非PEG化)
      • ImmunoFluor™-Azide(聚乙二醇化)
      • ImmunoFluor™-DBCO(聚乙二醇化)
    • 叶酸荧光脂质体
      • ImmunoFluor™-Folate(聚乙二醇化)
    • 巯基反应性荧光脂质体
      • ImmunoFluor™-PDP(非PEG化)
      • ImmunoFluor™-PDP(聚乙二醇化)
      • ImmunoFluor™ – 马来酰亚胺(聚乙二醇化)(插入后)

abbomax脂质体试剂

 

 

abbomax脂质体试剂 
普通非PEG脂质体
非PEG脂质体:由形成双层的磷脂组成,有/无胆固醇
水合缓冲液:20mM HEPES,10%蔗糖,pH 7.0 
外部缓冲液:20mM HEPES,10%蔗糖,pH 7.0 
包含5- 10%乙醇,必要时可通过透析轻松去除

描述 目录 # 尺寸 脂质组成 内部缓冲器 外部缓冲器 脂质浓度(mM) 平均粒径(nm) 价钱
含45 mol%CHOL的预制100nm HSPC普通脂质体 10105-0010 10毫升 HSPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 349.00
含45 mol%CHOL的预制100nm HSPC普通脂质体 10105-0100 100毫升 HSPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1739.00
预先制成的100nm脂质体,含33%CHOL 10104-0010 10毫升 DSPC / CHOL(55/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 359.00
预先制成的100nm脂质体,含33%CHOL 10104-0100 100毫升 DSPC / CHOL(55/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1795.00
含80%CHOL的预制80nm脂质体 10104S-0010 10毫升 DSPC / CHOL(55/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 80±10 $ 399.00
含80%CHOL的预制80nm脂质体 10104S-0100 100毫升 DSPC / CHOL(55/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 80±10 $ 1795.00
预制DMPC 100nm普通脂质体 10101-0010 10毫升 DMPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 359.00
预制DMPC 100nm普通脂质体 10101-0100 100毫升 DMPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1795.00
预制的DOPC普通脂质体 10108-0010 10毫升 DOPC 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 349.00
预制的DOPC普通脂质体 10108-0100 100毫升 DOPC 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 1745.00
预制的DPPC 100nm普通脂质体 10102-0010 10毫升 DPPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 359.00
预制的DPPC 100nm普通脂质体 10102-0100 100毫升 DPPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1795.00
预制DSPC 100nm普通脂质体 10103-0010 10毫升 DSPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 359.00
预制DSPC 100nm普通脂质体 10103-0100 100毫升 DSPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1795.00
含33 mol%CHOL的预制EPC普通脂质体 10107-0010 10毫升 EPC / CHOL(55/45 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 80±10 $ 499.00
含33 mol%CHOL的预制EPC普通脂质体 10107-0100 100毫升 EPC / CHOL(55/45 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 80±10 $ 2489.00
含45 mol%CHOL的预制EPC普通脂质体 10106-0010 10毫升 EPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 369.00
含45 mol%CHOL的预制EPC普通脂质体 10106-0100 100毫升 EPC / CHOL(50/45摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1859.00
预制的POPC普通脂质体 10109-0010 10毫升 POPC 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 349.00
预制的POPC普通脂质体 10109-0100 100毫升 POPC 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 1745.00

PEG化脂质体计划脂质体由形成双层的磷脂和mPEG-DSPE组成,有或没有胆固醇
水合缓冲液:20mM HEPES,10%蔗糖,pH 7.0 
外部缓冲液:20mM HEPES,10%蔗糖,pH 7.0,
包含5-10%乙醇必要时可通过透析轻松去除

CHOL:胆固醇
mPEG2000-DSPE:1,2-二硬脂酰基-sn-甘油-3-磷酸乙醇胺-N- [甲氧基(聚乙二醇)-2000]

描述 目录 # 尺寸 脂质组成 内部缓冲器 外部缓冲器 脂质浓度(mM) 平均粒径(nm) 价钱
预制的100nm长链20:0PC聚乙二醇化脂质体 10205-0010 10毫升 20:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 120±10 $ 369.00
预制的100nm长链20:0PC聚乙二醇化脂质体 10205-0100 100毫升 20:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 120±10 $ 1845.00
预制的100nm长链22:0PC聚乙二醇化脂质体 10206-0010 10毫升 22:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 60 120±10 $ 419.00
预制的100nm长链22:0PC聚乙二醇化脂质体 10206-0100 100毫升 22:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 60 120±10 $ 2095.00
预制的100nm长链24:0PC聚乙二醇化脂质体 10207-0010 10毫升 24:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 60 140±10 $ 629.00
预制的100nm长链24:0PC聚乙二醇化脂质体 10207-0100 100毫升 24:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 60 120±15 $ 3145.00
用PHSPC预制的100nm聚乙二醇化脂质体 10208-0010 10毫升 PHSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 389.00
用PHSPC预制的100nm聚乙二醇化脂质体 10208-0100 100毫升 PHSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 1945.00
预制DMPC 100nm普通PEG化脂质体 10201-0010 10毫升 DMPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 389.00
预制DMPC 100nm普通PEG化脂质体 10201-0100 100毫升 DMPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1945.00
预制的DPPC 100nm普通PEG化脂质体 10202-0010 10毫升 DPPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 389.00
预制的DPPC 100nm普通PEG化脂质体 10202-0100 100毫升 DPPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1945.00
预制DSPC 100nm普通PEG化脂质体 10203-0010 10毫升 DSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 319.00
预制DSPC 100nm普通PEG化脂质体 10203-0100 100毫升 DSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1595.00
预制的HSPC 100nm普通PEG化脂质体 10204-0010 10毫升 HSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 289.00
预制的HSPC 100nm普通PEG化脂质体 10204-0100 毫升 HSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 100±10 $ 1445.00
预制的PEG化DOPC脂质体 10209-0010 10毫升 DOPC / mPEG2000-DSPE(98:2摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 389.00
预制的PEG化DOPC脂质体 10209-0100 100毫升 DOPC / mPEG2000-DSPE(98:2摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 1945.00
预制的PEG化POPC脂质体 10209B-0010 10毫升 POPC / mPEG2000-DSPE(98:2摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 389.00
预制的PEG化POPC脂质体 10209B-0100 100毫升 POPC / mPEG2000-DSPE(98:2摩尔/摩尔) 20mMHEPES,10%蔗糖,pH = 7 20mMHEPES,10%蔗糖,pH = 7 80 110±20 $ 1945.00

具有硫酸铵梯度的
脂质体具有跨膜铵梯度的脂质体可用于主动加载弱碱性化合物。这些产品在未
交换外部硫酸铵的情况下被运送给用户,这是大多数研究人员优选的方法,因为这使他们有
机会控制铵梯度的建立。通过
对所需的具有较高pH(通常为pH 5-7)的缓冲溶液进行透析或渗滤,可以轻松建立铵梯度。

描述 目录 # 尺寸 脂质组成 内部缓冲器 外部缓冲器 脂质浓度(mM) 平均粒径(nm) 价钱
具有跨膜铵梯度的长链PC脂质体可用于加载弱碱 20204AS-0010 10毫升 20:0PC / mPEG2000-DSPE(95/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 429.00
具有跨膜铵梯度的长链PC脂质体可用于加载弱碱 20204AS-0100 100毫升 20:0PC / mPEG2000-DSPE(95/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 2145.00
具有跨膜铵梯度的长链PC脂质体可用于加载弱碱 20205AS-0010 10毫升 22:0PC / mPEG2000-DSPE(95/5摩尔/摩尔) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 559.00
具有跨膜铵梯度的长链PC脂质体可用于加载弱碱 20205AS-0100 100毫升 22:0PC / mPEG2000-DSPE(95/5摩尔/摩尔) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 2795.00
具有跨膜铵梯度的长链PC脂质体可用于加载弱碱 20208AS-0010 10毫升 24:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 60 120±15 $ 419.00
具有跨膜铵梯度的长链PC脂质体可用于加载弱碱 20208AS-0100 100毫升 24:0PC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 60 120±15 $ 2095.00
长链PC脂质体和跨膜铵梯度可用于加载弱碱 20206AS-0010 10毫升 HSPC / CHOL / mPEG2000-DSPE(56.2 / 38.5 / 5.3 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 629.00
长链PC脂质体和跨膜铵梯度可用于加载弱碱 20206AS-0100 100毫升 HSPC / CHOL / mPEG2000-DSPE(56.2 / 38.5 / 5.3 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 3145.00
长链PC脂质体和跨膜铵梯度可用于加载弱碱 20207AS-0010 10毫升 PHSPC / CHOL / mPEG2000-DSPE(56/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 939.00
长链PC脂质体和跨膜铵梯度可用于加载弱碱 20207AS-0100 100毫升 PHSPC / CHOL / mPEG2000-DSPE(56/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 4695.00
跨膜铵梯度的预制DPPC脂质体可用于加载弱碱 20201AS-0010 10毫升 DPPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 559.00
跨膜铵梯度的预制DPPC脂质体可用于加载弱碱 20201AS-0100 100毫升 DPPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 2795.00
跨膜铵梯度的预制DSPC脂质体可用于加载弱碱 20202AS-0010 10毫升 DSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 579.00
跨膜铵梯度的预制DSPC脂质体可用于加载弱碱 20202AS-0100 100毫升 DSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 2895.00
预先制备的具有跨膜铵梯度的HSPC脂质体可用于加载弱碱 20203AS-0010 10毫升 HSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 479.00
预先制备的具有跨膜铵梯度的HSPC脂质体可用于加载弱碱 20203AS-0100 100毫升 HSPC / CHOL / mPEG2000-DSPE(50/45/5 mol / mol) 硫酸铵(250 mM) 硫酸铵(250 mM) 80 100±10 $ 2395.00

转染试剂:阳离子脂质
体预先形成的阳离子脂质体通过超声处理制备。它们准备用于制备核酸复合物。
如果您要订购未在目录中显示的特定类型的阳离子脂质体,请随时与我们联系。 
脂质浓度:
在Milli-Q水中制备10 mM 脂质体

描述 目录 # 尺寸 脂质组成 内部缓冲器 外部缓冲器 脂质浓度(mM) 平均粒径(nm) 价钱
用于脂质复合物的阳离子脂质体 50101-0001 2毫升 DMTAP / DOPE(50/50摩尔/摩尔) 10 100±10 $ 239.00
用于脂质复合物的阳离子脂质体 50101-0005 6毫升 DMTAP / DOPE(50/50摩尔/摩尔) 10 100±10 $ 539.00
用于脂质复合物的阳离子脂质体 50101-0010 10毫升 DMTAP / DOPE(50/50摩尔/摩尔) 10 100±10 $ 839.00
用于脂质复合物的阳离子脂质体 50102-0001 2毫升 DOTAP / DOPE((50/50摩尔/摩尔) 10 100±10 $ 199.00
用于脂质复合物的阳离子脂质体 50102-0005 6毫升 DOTAP / DOPE((50/50摩尔/摩尔) 10 100±10 $ 476.00
用于脂质复合物的阳离子脂质体 50102-0010 10毫升 DOTAP / DOPE((50/50摩尔/摩尔) 10 100±10 $ 699.00
用于脂质复合物的阳离子脂质体 50103-0001 2毫升 DDAB / DOPE(50/50 mol / mol) 10 100±10 $ 199.00
用于脂质复合物的阳离子脂质体 50103-0005 6毫升 DDAB / DOPE(50/50 mol / mol) 10 100±10 $ 499.00
用于脂质复合物的阳离子脂质体 50103-0010 10毫升 DDAB / DOPE(50/50 mol / mol) 10 100±10 $ 659.00
用于脂质复合物的阳离子脂质体 50104-0001 2毫升 DODAP / DOPE(50/50摩尔/摩尔) 10 100±10 $ 199.00
用于脂质复合物的阳离子脂质体 50104-0005 6毫升 DODAP / DOPE(50/50摩尔/摩尔) 10 100±10 $ 479.00
用于脂质复合物的阳离子脂质体 50104-0010 10毫升 DODAP / DOPE(50/50摩尔/摩尔) 10 100±10 $ 699.00
用于脂质复合物的阳离子脂质体 50105-0001 2毫升 DC-CHOL / DOPE(50/50摩尔/摩尔) 10 100±10 $ 199.00
用于脂质复合物的阳离子脂质体 50105-0005 6毫升 DC-CHOL / DOPE(50/50摩尔/摩尔) 10 100±10 $ 449.00
用于脂质复合物的阳离子脂质体 50105-0010 10毫升 DC-CHOL / DOPE(50/50摩尔/摩尔) 10 100±10 $ 659.00