Gemini胎牛血清*

Gemini Bio-Products一直致力于生产一致,高品质的产品,并提供的个性化服务。该公司开始在加利福尼亚州卡拉巴萨斯开展业务,其营销活动针对全州的研究和生物技术社区。由于持续和渐进的成功,双子座不断扩大销售队伍,以便能够为整个美国服务。经过多次扩建后,Gemini现在在加利福尼亚州西萨克拉门托的一个12,000平方英尺的制造工厂中运营。

今天,Gemini是科学界在学术研究和生物技术,细胞和基因治疗以及生物制药行业的细胞培养基,血清和其他试剂的制造商和供应商。全国销售队伍和分销网络为细胞培养实验室提供服务。

Gemini胎牛血清*

 

Premier™ Fetal Bovine Serum

头胎牛血清

三倍0.1微米无菌过滤

 

 

Catalog #: 100-307

Origin: France

Lot #: A49F74G

Expiration Date: May 2020

 

生物内毒素检查

内毒素Endotoxin <10.0 EU/mL 1.313 EU/mL

血红蛋白Hemoglobin <25.0 mg/dL 21.94 mg/dL

 

 

微生物检测

 

不孕症 Sterility

TEST                SPECIFICATION               RESULTS

                                                        

细菌Bacteria                   Not Detected              Not Detected

真菌Fungi                       Not Detected                 Not Detected

支原体Mycoplasma        Not Detected               Not Detected 

 

Viral Testing 病毒检测

细胞病变 Cytopathic Agents                                        Not Detected Not Detected

血液吸收剂Hemadsorbing Agents                              Not Detected Not Detected

蓝舌病Bluetongue Virus                                               Not Detected Not Detected 

牛白血病病毒Bovine Leukemia Virus                             Not Detected Not Detected

牛病毒性腹泻Bovine Viral Diarrhea (cytopathic)          Not Detected Not Detected

牛狂犬病病毒Bovine Rabies Virus                                      Not Detected Not Detected 

 

Physical Testing 

渗透压 260-350 mOsm/kg 320 mOsm/kg

pH @ RT 6.5 – 8.5 7.36

 

Albumin                                        Test and Report                              14.2 g/L

Alkaline Phosphatase                     Test and Report                            168 U/L

ALT (SGPT)                                       Test and Report                             <6.0 U/L

AST (SGOT)                                   Test and Report                                    11 U/L

Bilirubin, Total                                   Test and Report                             0.1 mg/dL

Calcium                                           Test and Report                             13.5 mg/dL

Cholesterol                                        Test and Report                          30 mg/dL

Creatinine Test and Report 2.7 mg/dL

Chloride Test and Report 98 mM

Glucose Test and Report 129 mg/dl

IgG Test and Report 222 mg/L Iron,

Serum Test and Report 211 ug/dL

Phosphorus Test and Report 10.7 mg/dL

Potassium Test and Report 13.7 mM

Sodium Test and Report 132 mM

Triglycerides Test and Report 82 mg/dL

Uric Acid Test and Report 2.6 mg/dL

 

 

对采集的动物进行检测,发现牛海绵状脑病(BSE)呈阴性。

更新了EC 999/2001法规。

所有胎牛血清均在政府兽医监督下从注册屠宰场收集。

当局。

冷冻和/或解冻后,产品中可能会出现沉淀物;这种情况不会影响培养性能

 

HyClone澳大利亚优级胎牛血清

 HyClone澳大利亚优级胎牛血清-上海金畔生物

Hy CloneTM 血清

澳大利亚优级胎牛血清

澳大利亚四面环海,相较与世界其他大多数地区,在动物疾病控制和管理方面具有得天独厚的优势 同时澳大利亚有着世界—流的动物饲养方法、动物营养与保健措施

HyClone澳大利亚来源的优级胎牛血清 (Fetal Bovine Serum) 源自经美国农业部 (USDA)或澳大利亚农业部 (DA) 批准的屠宰场(图1) 原血采自非蓝舌病疫区所有加工工艺包括收集、加工和过滤,都在澳大利亚本土完成,避免了交  叉污染的风险

HyClone 澳大利亚优级胎牛血清 采用与新西兰来源胎牛血清相同的加工工艺 符合 cGMP(21 CFR 820) 要求在产品质量和表现及安全方面与新西兰来源胎牛血清—致

Or it ain 指纹识别技术

HyClone 澳大利亚优级胎牛血清的指纹识别技术通过测量环境中被植物、动物和土壤吸收的天然元素,将测量结果编译成”指纹’,此指纹能够将血清与特定地理位置联系起追溯血清的来源

 HyClone SV30208.02

澳大利亚优级胎牛血清主要特征

• 源自澳大利亚USDA 认为无疯牛病 (BSE) 和口蹄疫

(FMD), 原血采自非蓝舌病疫区;

■ .. 真混合“生产工艺,保证批间一致性;

• Oritain 指纹识别技术和完整的文件追踪系统,  确保来源可追溯性;

• 安全稳定供货;

安全稳定供货

1 澳大利亚优胎牛血

 

• 通过 USDA 安全测试

• 依据美国联邦法规 9 CFR 113.53 的病毒检测

• 依据 EMEA BVDV 抗体检测

• 低抗体含量,高生长因子,未添加任何试剂;

 

无菌过滤“真混合”工艺

澳大利亚优级胎牛血清采用 真 混合工艺经过连续 3 100 nM (0 .1 µM) 孔径过滤器处理*消除了生物污染为了确保每瓶血清之间的均匀性和一致性,在分装前,每 批血漏都会进行重新混合“真混合技术

  • 稳定的供应链;
  • 与多个牧场签订长期合作关系;
  • 充足的原血储备;

 

质控测定

具有完整的可追溯性和完备的检测项目,除常规内毒素、总蛋白、血红蛋白、无菌性、病毒和支原测定项目外,

COA 还包含 20 多项蛋白、微量元素及金属离子的检测和安全性测试特别增加了 BVDV 抗体的检测检测的结果见表1 :

 

其它:

能力及服务

• 专业的技术团队

• 标准血清项目测试

• 非标准的血清项目测定(客户定制)

 

质量保证

• 符合 cGM P (21 CFR 820)  要求

• 经验证的库存管理系统;

• 高效解决投诉;

• 1S0 6 级区域下的 1S0 5 级层流净化罩下灌装

 

货号 品名 规格 价格
SV30208.02 澳大利亚优级胎牛血清 500 ml ¥5,500

sigmaaldrich胎牛血清说明书

sigmaaldrich胎牛血清说明书

牛血清由于包含丰富的营养成分,通常被添加到细胞培养液中,用于促进和维持脊椎动物、哺乳动物、昆虫及其他物种细胞的生长。牛血清的来源地很多,其中澳大利亚来源的牛血清被认为是品质更优、更安全的血清。


胎牛血清

  • 澳大利亚来源,具有可追溯性

  • 无菌心脏穿刺取血

  • 3次0.1μm无菌过滤

  • 可提供γ射线辐照处理的血清现货,灭活病毒和其他外来微生物

  • 严格QC标准进行微生物、内毒素、血红蛋白、IgG含量等多项检测

  • 经过细胞培养和杂交瘤细胞培养验证

一般描述

动物血清通常用于补充基础培养基配方,以使许多细胞类型在体外最佳生长。胎牛血清(FBS)由于其高营养成分,是用于补充细胞培养基的最常见的血清。尽管其在蛋白中含量相对较低,但FBS可有效促进和维持脊推动物、哺乳动物和昆虫细胞的生长

储存及稳定性

为有效地保存动物血清的完整性,应冷冻意光保存。应避免多次解冻/冷冻循环,因为它们会加速血清营养物质的降解,并可能导致不溶性沉淀物的形成。

为了获得稳定性和最佳性能,血清应储存于一20℃,并在标示的失效日期之前使用。

碳吸附胎牛血清说明书

碳吸附胎牛血清说明书

产品详情

货号

规格

价格

78ED10001-500ml

500ml

6800.00

78ED10001-10*50 ml

10*50 ml

6900.00

78ED10001-50ml

50ml

900.00

 产品描述

碳吸附胎牛血清是一款低水平类固醇类激素的胎牛血清产品。通过碳吸附可降低血清中许多激素及生长因子的浓度,如雌二醇、皮质醇、皮质酮、T3、T4、前列腺素等。该血清适用于上述一些分子可能干扰实验结果的实验中,对于那些需要这些分子的细胞培养,也可能降低细胞生长性能。

产品特点

三次0.1µm 无菌过滤;

支原体检测和病毒筛查

产品应用

碳吸附胎牛血清是细胞培养中用量很大的培养基,含有丰富的细胞生长必须的营养成份,常用于动物细胞的体外培养,具有极为重要的功能。

运输与保存方法

干冰运输,-20°C保存。

批号、生产日期见瓶身。

注意事项

为了您的安全和健康,请穿实验服并戴一次性手套操作!

本产品主要用于科研领域,不宜用于临床诊断或其他用途。

特级胎牛血清(澳洲)说明书

特级胎牛血清(澳洲)说明书

产品详情

货号

规格

价格

QFED10002-500ml

500ml

8000.00

QFED10002-10*500ml

10*500ml

75000.00






产品描述

牛血清由于包含丰富的营养成分,通常被添加到细胞培养液中,用于促进和维持脊椎动物、哺乳动物、昆虫及其他物种细胞的生长。胎牛血清的来源地很多,其中澳大利亚来源的牛血清被认为是品质更优、更安全的血清。

产品特点

澳大利亚来源,具有可追溯性,现货;无无菌心脏穿刺取血;3次0.1μm无菌过滤;用途比 较广,适用于各种癌细胞株,娇贵细胞,原代细胞,干细胞(胚胎干细胞,间充质干细胞等)培养。严格QC标准进行微生物、内毒素、血红蛋白、IgG含量等多项检测(内毒素水平:≤10 EU/ml,血红蛋白水平:≤ 30 毫克/分升);经过细胞培养和杂交瘤细胞培养验证。澳洲牛血清(新西兰)也用于科研和诊断试剂,疫苗生产和研发,同时也能够用于作为免疫反应中的阻断剂和蛋白配体反应中的固定剂。

产品应用

     适用于各种癌细胞株,娇贵细胞,原代细胞,干细胞(胚胎干细胞,间充质干细胞等)培养;是做干细胞培养的良好选择在细胞培养过程中,经常加入5%-20%的胎牛血清,推荐使用的Jinpan胎牛血清浓度是10%。高浓度的血清可能改变细胞的基因表达谱,影响后续实验的结果,我们在实验中使用10%Jinpan澳洲胎牛血清培养293T细胞,效果非常好。但是有些细胞也会使用5%或者20%Jinpan胎牛血清,要根据具体 胞选择合适的Jinpan胎牛血清浓度。

运输与保存方法

干冰运输,-20℃保存,有效期5年。

注意事项

注意事项

1、需要长期保存的血清必须储存于-20℃ – 70℃ 低温冰箱中。4℃冰箱中保存时间切勿超过1个月。切勿将血清在 37℃放置太久,否则血清会变得浑浊,同时血清中的有效成分会被破坏,而影响血清质量。如果一次无法用完一瓶,可将4045ml分装于无菌50ml离心管中。由于血清结冰时体积会增加约10%,因此,血清在冻入低温冰箱前,必须预留一定体积空间,否则易发生污染或玻璃瓶冻裂。

2、提供的血清为无菌,无需再过滤除菌。如发现血清有悬浮物,则可将血清加入培养液内一起过滤,切勿直接过滤血清。

3、瓶装血清解冻需采用逐步解冻法:-20℃ -70℃ 低温冰箱中的血清放入4℃冰箱中溶解1.然后移入室温,待全部溶解后再分装,一般以50ml无菌离心管可分装4045ml。在溶解过程中须规则摇晃均匀(小心勿造成气泡),使温度 与成分均一,减少沈淀的发生。.切勿直接将血清从-20℃进入37℃解冻,这样因温度改变太大,容易造成蛋白质凝集而出现沉淀。

4、热灭活是指56℃, 30分钟加热已解冻的血清.加热过程中须规则摇晃均匀.此热处理的目的是使血清中的补体成分灭活.除非必须,一般不建议作此热处理,因为热处理会造成血清沉淀物显著增多,而且还会影响血清的质量.补体 参与反应有:细胞毒作用, 平滑肌细胞收缩, 肥大细胞和血小板释放组胺, 增强吞噬作用, 促进淋巴细胞和巨噬细胞 发生化学趋化和活化。

5、血清中的沉淀物 絮状物:主要是血清中的脂蛋白变性及解冻后血清中纤维蛋白造成,这些絮状物不会影响血清本身 的质量.可用离心3000rpm,5分钟去除,也可不用处理。 显微镜下小黑点“:经过热处理过的血清,沉淀物 的形成会显著增多。有些沉淀物在显微镜下观察象小黑点“,常误认为血清受污染。一般情况下,此小黑 点不会影响细胞生长,但如果怀疑血清质量,则应立即停止使用,更换另一批号的血清。

 

为了您的安全和健康,请穿实验服并戴一次性手套操作!

本产品主要用于科研领域,不宜用于临床诊断或其他用途。

胎牛血清(南美特级) 动物细胞培养基|Fetal Bovine Serum Origin South America Gold

胎牛血清(南美特级) 动物细胞培养基|Fetal Bovine Serum Origin South America Gold

产品说明书

FAQ

COA

已发表文献

 

Yeasen胎牛血清(特级)3100 nm过滤和支原体、病毒筛查,经过严格检验测试后全自动化罐装,规范化生产,品质保证,含有丰富的细胞生长所需的营养成分,适用于培养大部分常规细胞系

 

产品性质

中文别名(Chinese Synonym)

胎牛血清(特级)

英文别名(English Synonym)

Fetal Bovine Serum Gold

内毒素水平

≤5 EU/mL

血红蛋白含量

≤0.02%(w/v)

支原体检测

阴性

灭菌处理

三次100 nm过滤

 

运输和保存方法

运输方式干冰运输

保存方式:-20℃至-10℃可保存5年

【注】一旦解冻,血清应该保存在2℃到8℃冰箱,存储时间不宜超过6周。如果需要长期保存,建议将血清先进行分装后重新冷冻保存。

 

解冻的方式(二者选一)

1) 将血清从-20℃存储条件下取出,放置于2℃至8℃冰箱中过夜。然后将血清转移到37℃的水浴中,不时的摇动瓶身混合里面的液体。解冻以后不要在37℃水浴放置太长时间。

2) 直接将血清从-20℃取出后,放置于37℃水浴中,不断摇晃瓶身使其加快解冻和混合。

【注】如果不晃动瓶身,当温度超过40℃的时候沉积在瓶底的物质有可能会发生蛋白变形,出现沉淀。

 

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)本产品仅作科研用途!

 

HB211231

 

 

Q: 请问我们的血清拿到之后还需要热灭活吗?

A: 现在商业化的血清产品,基本上出厂之前都经过了灭活处理,所以一般情况下,就不需要再操作一次灭活了

Q: 解冻后血清中有悬浮物质/絮状沉淀,因怎样处理?

A: 血清中沉淀物的出现有许多种原因,但最普遍的原因是由于血清中脂蛋白的变性所造成,而血纤维蛋白(形成凝血的蛋白之一)在血清解冻后,也会存在于血清中,亦是造成沉淀物的主要原因之一。但这些絮状沉淀物,并不影响血清本身的质量。

去除这些絮状沉淀物,可以将血清分装至无菌离心管内,以400g稍微离心,上清液即可接着加入培养基内一起过滤.我们不建议您以过滤的方法去除这些絮状物,因为它可能会阻塞您的过滤膜我们建议您在使用血清的时候,注意正确的血清解冻步骤,并尽量避免灭活血清及长时间的将血清置于高温环境中

Q:为什么我们的血清看着比较黄,竞品公司血清比较红?

A:血红蛋白的原因,血红蛋白含量比较高,血清就会比较红,血红蛋白含量较少,所以会比较黄,血清本质是黄的。

[1] Hu S, Peng L, Xu C, Wang Z, Song A, Chen FX. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol Cell. 2021;81(21):4425-4439.e6. doi:10.1016/j.molcel.2021.08.029(IF:17.970)
[2] Tu J, Li W, Yang S, et al. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. Adv Sci (Weinh). 2022;9(3):e2103631. doi:10.1002/advs.202103631(IF:16.806)
[3] Zhang W, Liu J, Li X, et al. Precise Chemodynamic Therapy of Cancer by Trifunctional Bacterium-Based Nanozymes. ACS Nano. 2021;15(12):19321-19333. doi:10.1021/acsnano.1c05605(IF:15.881)
[4] Zhao C, Xie Y, Xu L, et al. Structures of a mammalian TRPM8 in closed state. Nat Commun. 2022;13(1):3113. Published 2022 Jun 3. doi:10.1038/s41467-022-30919-y(IF:14.919)
[5] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[6] Li S, Zhang J, Qian S, et al. S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (Lond). 2021;41(2):154-170. doi:10.1002/cac2.12130(IF:10.392)
[7] Yang X, Qiu Q, Liu G, et al. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria. J Control Release. 2022;341:329-340. doi:10.1016/j.jconrel.2021.11.037(IF:9.776)
[8] Wang X, Qi Y, Wang Z, et al. RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Rep. 2022;39(4):110732. doi:10.1016/j.celrep.2022.110732(IF:9.423)
[9] Ma Z, Zhang Y, Zhang J, et al. Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II Photothermal Therapy by Mitochondrial Targeting. ACS Appl Mater Interfaces. 2020;12(35):39434-39443. doi:10.1021/acsami.0c11469(IF:8.758)
[10] Sun Q, Ye Y, Gui A, et al. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett. 2022;537:215678. doi:10.1016/j.canlet.2022.215678(IF:8.679)
[11] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[12] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[13] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[14] Liu Z, Tao C, Li S, et al. circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing. Elife. 2021;10:e69457. Published 2021 Oct 14. doi:10.7554/eLife.69457(IF:8.146)
[15] Cao J, Peng X, Li H, et al. Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. Mater Sci Eng C Mater Biol Appl. 2021;129:112369. doi:10.1016/j.msec.2021.112369(IF:7.328)
[16] Ma H, Lin J, Li L, et al. Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. Chemosphere. 2021;282:131149. doi:10.1016/j.chemosphere.2021.131149(IF:7.086)
[17] Chen Y, Chen Y, Jiang X, et al. Vascular Adventitial Fibroblasts-Derived FGF10 Promotes Vascular Smooth Muscle Cells Proliferation and Migration in vitro and the Neointima Formation in vivo. J Inflamm Res. 2021;14:2207-2223. Published 2021 May 25. doi:10.2147/JIR.S305204(IF:6.922)
[18] Wang Y, Zhao M, Li W, et al. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol. 2021;9:656153. Published 2021 Apr 1. doi:10.3389/fcell.2021.656153(IF:6.684)
[19] Liu W, Wu Z, Yu Y, et al. Functional Evaluation of KEL as an Oncogenic Gene in the Progression of Acute Erythroleukemia. Oxid Med Cell Longev. 2022;2022:5885342. Published 2022 Jan 30. doi:10.1155/2022/5885342(IF:6.543)
[20] Wang G, Wang H, Jin Y, et al. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota. Food Res Int. 2022;155:111003. doi:10.1016/j.foodres.2022.111003(IF:6.475)
[21] Zhi W, Li S, Wan Y, Wu F, Hong L. Short-term starvation synergistically enhances cytotoxicity of Niraparib via Akt/mTOR signaling pathway in ovarian cancer therapy [published correction appears in Cancer Cell Int. 2022 Mar 21;22(1):131]. Cancer Cell Int. 2022;22(1):18. Published 2022 Jan 11. doi:10.1186/s12935-022-02447-8(IF:5.722)
[22] Wang Q, Zhu Y, Li Z, et al. Up-regulation of SPC25 promotes breast cancer. Aging (Albany NY). 2019;11(15):5689-5704. doi:10.18632/aging.102153(IF:5.515)
[23] Liu XF, Zhu XD, Feng LH, et al. Physical activity improves outcomes of combined lenvatinib plus anti-PD-1 therapy in unresectable hepatocellular carcinoma: a retrospective study and mouse model. Exp Hematol Oncol. 2022;11(1):20. Published 2022 Apr 4. doi:10.1186/s40164-022-00275-0(IF:5.133)
[24] Gao Z, Wang T, Li R, et al. The discovery of a novel series of potential ERRα inverse agonists based on p-nitrobenzenesulfonamide template for triple-negative breast cancer in vivo. J Enzyme Inhib Med Chem. 2022;37(1):125-134. doi:10.1080/14756366.2021.1995728(IF:5.051)
[25] Liu ZZ, Duan XX, Yuan MC, et al. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci. 2022;294:120370. doi:10.1016/j.lfs.2022.120370(IF:5.037)
[26] Wu Z, Wang Q, Yang H, et al. Discovery of Natural Products Targeting NQO1 via an Approach Combining Network-Based Inference and Identification of Privileged Substructures. J Chem Inf Model. 2021;61(5):2486-2498. doi:10.1021/acs.jcim.1c00260(IF:4.956)
[27] Yang X, Miao BS, Wei CY, et al. Lymphoid-specific helicase promotes the growth and invasion of hepatocellular carcinoma by transcriptional regulation of centromere protein F expression. Cancer Sci. 2019;110(7):2133-2144. doi:10.1111/cas.14037(IF:4.751)
[28] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[29] Qin F, Zhang W, Zhang M, et al. Adipose-Derived Stem Cells Improve the Aging Skin of Nude Mice by Promoting Angiogenesis and Reducing Local Tissue Water. Aesthet Surg J. 2021;41(7):NP905-NP913. doi:10.1093/asj/sjab001(IF:4.283)
[30] Luo H, Zheng J, Chen Y, et al. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro. Front Microbiol. 2020;11:821. Published 2020 Apr 23. doi:10.3389/fmicb.2020.00821(IF:4.236)
[31] Ma H, Ding Z, Xie Y, et al. Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicol Appl Pharmacol. 2022;438:115910. doi:10.1016/j.taap.2022.115910(IF:4.219)
[32] Peng X, Wang K, Zhang C, et al. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics. Free Radic Res. 2021;55(11-12):1080-1093. doi:10.1080/10715762.2021.2018426(IF:4.148)
[33] Niu Y, Liu F, Wang X, et al. miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis. Onco Targets Ther. 2021;14:3649-3658. Published 2021 Jun 4. doi:10.2147/OTT.S304117(IF:4.147)
[34] Sun J, Zhou YQ, Xu BY, et al. STING/NF-κB/IL-6-Mediated Inflammation in Microglia Contributes to Spared Nerve Injury (SNI)-Induced Pain Initiation [published online ahead of print, 2021 Nov 2]. J Neuroimmune Pharmacol. 2021;10.1007/s11481-021-10031-6. doi:10.1007/s11481-021-10031-6(IF:4.147)
[35] Duan H, Lei Z, Xu F, et al. PARK2 Suppresses Proliferation and Tumorigenicity in Non-small Cell Lung Cancer. Front Oncol. 2019;9:790. Published 2019 Aug 23. doi:10.3389/fonc.2019.00790(IF:4.137)
[36] Liu Q, Tian R, Yu P, Shu M. miR-221/222 suppression induced by activation of the cAMP/PKA/CREB1 pathway is required for cAMP-induced bidirectional differentiation of glioma cells. FEBS Lett. 2021;595(22):2829-2843. doi:10.1002/1873-3468.14208(IF:4.124)
[37] Zeng WJ, Lu C, Shi Y, et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 2020;1867(10):118795. doi:10.1016/j.bbamcr.2020.118795(IF:4.105)
[38] Pan H, Chai W, Liu X, Yu T, Sun L, Yan M. DYNC1H1 regulates NSCLC cell growth and metastasis by IFN-γ-JAK-STAT signaling and is associated with an aberrant immune response. Exp Cell Res. 2021;409(1):112897. doi:10.1016/j.yexcr.2021.112897(IF:3.905)
[39] Qin F, Huang J, Zhang W, et al. The Paracrine Effect of Adipose-Derived Stem Cells Orchestrates Competition between Different Damaged Dermal Fibroblasts to Repair UVB-Induced Skin Aging. Stem Cells Int. 2020;2020:8878370. Published 2020 Dec 17. doi:10.1155/2020/8878370(IF:3.869)
[40] Wang L, Hu D, Xie B, Xie L. Blockade of Myd88 signaling by a novel MyD88 inhibitor prevents colitis-associated colorectal cancer development by impairing myeloid-derived suppressor cells. Invest New Drugs. 2022;40(3):506-518. doi:10.1007/s10637-022-01218-6(IF:3.850)
[41] Xie H, Zhang C, Zhang J, et al. An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biol Int. 2022;46(1):129-138. doi:10.1002/cbin.11710(IF:3.612)
[42] Li X, Wang X, Miao L, Guo Y, Yuan R, Tian H. Design, synthesis, and neuroprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opened derivatives. Biochem Biophys Res Commun. 2021;556:99-105. doi:10.1016/j.bbrc.2021.03.171(IF:3.575)
[43] Zhu Y, Wu H, Yang X, Xiong Z, Zhao T, Gan X. LINC00514 facilitates cell proliferation, migration, invasion, and epithelial-mesenchymal transition in non-small cell lung cancer by acting on the Wnt/β-catenin signaling pathway. Bioengineered. 2022;13(5):13654-13666. doi:10.1080/21655979.2022.2084246(IF:3.269)
[44] Wang XH, Gao JW, Bao JP, et al. GATA4 promotes the senescence of nucleus pulposus cells via NF-κB pathway. Arch Gerontol Geriatr. 2022;101:104676. doi:10.1016/j.archger.2022.104676(IF:3.250)
[45] Huang D, Xiong M, Xu X, et al. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem Biophys Res Commun. 2020;529(2):289-295. doi:10.1016/j.bbrc.2020.05.226(IF:2.985)
[46] Ma H, Song X, Huang P, et al. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res Genet Toxicol Environ Mutagen. 2021;865:503337. doi:10.1016/j.mrgentox.2021.503337(IF:2.873)
[47] Wang D, Xue Z, Wu H, Shi G, Feng S, Zhao L. Hepatoprotective effect and structural analysis of Hedysarum polysaccharides in vivo and in vitro [published online ahead of print, 2022 Apr 28]. J Food Biochem. 2022;e14188. doi:10.1111/jfbc.14188(IF:2.720)
[48] Xiao L, Zhang S, Zheng Q, Zhang S. Dysregulation of KIF14 regulates the cell cycle and predicts poor prognosis in cervical cancer: a study based on integrated approaches. Braz J Med Biol Res. 2021;54(11):e11363. Published 2021 Sep 3. doi:10.1590/1414-431X2021e11363(IF:2.590)
[49] Li T, Liu Y, Zhang Q, Sun W, Dong Y. A steroid-induced osteonecrosis model established using an organ-on-a-chip platform. Exp Ther Med. 2021;22(4):1070. doi:10.3892/etm.2021.10504(IF:2.447)
[50] Zheng GD, Hu PJ, Chao YX, et al. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr. 2019;7(3):1104-1112. Published 2019 Feb 10. doi:10.1002/fsn3.953(IF:1.747)
[51] Ying J, Huang HH, Zhang MM, Chen JF. Up-regulation of SOCS4 promotes cell proliferation and migration in esophageal squamous cell carcinoma. Transl Cancer Res. 2021;10(5):2416-2427. doi:10.21037/tcr-21-700(IF:1.241)

 

Yeasen胎牛血清(特级)3100 nm过滤和支原体、病毒筛查,经过严格检验测试后全自动化罐装,规范化生产,品质保证,含有丰富的细胞生长所需的营养成分,适用于培养大部分常规细胞系

 

产品性质

中文别名(Chinese Synonym)

胎牛血清(特级)

英文别名(English Synonym)

Fetal Bovine Serum Gold

内毒素水平

≤5 EU/mL

血红蛋白含量

≤0.02%(w/v)

支原体检测

阴性

灭菌处理

三次100 nm过滤

 

运输和保存方法

运输方式干冰运输

保存方式:-20℃至-10℃可保存5年

【注】一旦解冻,血清应该保存在2℃到8℃冰箱,存储时间不宜超过6周。如果需要长期保存,建议将血清先进行分装后重新冷冻保存。

 

解冻的方式(二者选一)

1) 将血清从-20℃存储条件下取出,放置于2℃至8℃冰箱中过夜。然后将血清转移到37℃的水浴中,不时的摇动瓶身混合里面的液体。解冻以后不要在37℃水浴放置太长时间。

2) 直接将血清从-20℃取出后,放置于37℃水浴中,不断摇晃瓶身使其加快解冻和混合。

【注】如果不晃动瓶身,当温度超过40℃的时候沉积在瓶底的物质有可能会发生蛋白变形,出现沉淀。

 

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)本产品仅作科研用途!

 

HB211231

 

 

Q: 请问我们的血清拿到之后还需要热灭活吗?

A: 现在商业化的血清产品,基本上出厂之前都经过了灭活处理,所以一般情况下,就不需要再操作一次灭活了

Q: 解冻后血清中有悬浮物质/絮状沉淀,因怎样处理?

A: 血清中沉淀物的出现有许多种原因,但最普遍的原因是由于血清中脂蛋白的变性所造成,而血纤维蛋白(形成凝血的蛋白之一)在血清解冻后,也会存在于血清中,亦是造成沉淀物的主要原因之一。但这些絮状沉淀物,并不影响血清本身的质量。

去除这些絮状沉淀物,可以将血清分装至无菌离心管内,以400g稍微离心,上清液即可接着加入培养基内一起过滤.我们不建议您以过滤的方法去除这些絮状物,因为它可能会阻塞您的过滤膜我们建议您在使用血清的时候,注意正确的血清解冻步骤,并尽量避免灭活血清及长时间的将血清置于高温环境中

Q:为什么我们的血清看着比较黄,竞品公司血清比较红?

A:血红蛋白的原因,血红蛋白含量比较高,血清就会比较红,血红蛋白含量较少,所以会比较黄,血清本质是黄的。

[1] Hu S, Peng L, Xu C, Wang Z, Song A, Chen FX. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol Cell. 2021;81(21):4425-4439.e6. doi:10.1016/j.molcel.2021.08.029(IF:17.970)
[2] Tu J, Li W, Yang S, et al. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. Adv Sci (Weinh). 2022;9(3):e2103631. doi:10.1002/advs.202103631(IF:16.806)
[3] Zhang W, Liu J, Li X, et al. Precise Chemodynamic Therapy of Cancer by Trifunctional Bacterium-Based Nanozymes. ACS Nano. 2021;15(12):19321-19333. doi:10.1021/acsnano.1c05605(IF:15.881)
[4] Zhao C, Xie Y, Xu L, et al. Structures of a mammalian TRPM8 in closed state. Nat Commun. 2022;13(1):3113. Published 2022 Jun 3. doi:10.1038/s41467-022-30919-y(IF:14.919)
[5] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[6] Li S, Zhang J, Qian S, et al. S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (Lond). 2021;41(2):154-170. doi:10.1002/cac2.12130(IF:10.392)
[7] Yang X, Qiu Q, Liu G, et al. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria. J Control Release. 2022;341:329-340. doi:10.1016/j.jconrel.2021.11.037(IF:9.776)
[8] Wang X, Qi Y, Wang Z, et al. RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Rep. 2022;39(4):110732. doi:10.1016/j.celrep.2022.110732(IF:9.423)
[9] Ma Z, Zhang Y, Zhang J, et al. Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II Photothermal Therapy by Mitochondrial Targeting. ACS Appl Mater Interfaces. 2020;12(35):39434-39443. doi:10.1021/acsami.0c11469(IF:8.758)
[10] Sun Q, Ye Y, Gui A, et al. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett. 2022;537:215678. doi:10.1016/j.canlet.2022.215678(IF:8.679)
[11] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[12] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[13] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[14] Liu Z, Tao C, Li S, et al. circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing. Elife. 2021;10:e69457. Published 2021 Oct 14. doi:10.7554/eLife.69457(IF:8.146)
[15] Cao J, Peng X, Li H, et al. Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. Mater Sci Eng C Mater Biol Appl. 2021;129:112369. doi:10.1016/j.msec.2021.112369(IF:7.328)
[16] Ma H, Lin J, Li L, et al. Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. Chemosphere. 2021;282:131149. doi:10.1016/j.chemosphere.2021.131149(IF:7.086)
[17] Chen Y, Chen Y, Jiang X, et al. Vascular Adventitial Fibroblasts-Derived FGF10 Promotes Vascular Smooth Muscle Cells Proliferation and Migration in vitro and the Neointima Formation in vivo. J Inflamm Res. 2021;14:2207-2223. Published 2021 May 25. doi:10.2147/JIR.S305204(IF:6.922)
[18] Wang Y, Zhao M, Li W, et al. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol. 2021;9:656153. Published 2021 Apr 1. doi:10.3389/fcell.2021.656153(IF:6.684)
[19] Liu W, Wu Z, Yu Y, et al. Functional Evaluation of KEL as an Oncogenic Gene in the Progression of Acute Erythroleukemia. Oxid Med Cell Longev. 2022;2022:5885342. Published 2022 Jan 30. doi:10.1155/2022/5885342(IF:6.543)
[20] Wang G, Wang H, Jin Y, et al. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota. Food Res Int. 2022;155:111003. doi:10.1016/j.foodres.2022.111003(IF:6.475)
[21] Zhi W, Li S, Wan Y, Wu F, Hong L. Short-term starvation synergistically enhances cytotoxicity of Niraparib via Akt/mTOR signaling pathway in ovarian cancer therapy [published correction appears in Cancer Cell Int. 2022 Mar 21;22(1):131]. Cancer Cell Int. 2022;22(1):18. Published 2022 Jan 11. doi:10.1186/s12935-022-02447-8(IF:5.722)
[22] Wang Q, Zhu Y, Li Z, et al. Up-regulation of SPC25 promotes breast cancer. Aging (Albany NY). 2019;11(15):5689-5704. doi:10.18632/aging.102153(IF:5.515)
[23] Liu XF, Zhu XD, Feng LH, et al. Physical activity improves outcomes of combined lenvatinib plus anti-PD-1 therapy in unresectable hepatocellular carcinoma: a retrospective study and mouse model. Exp Hematol Oncol. 2022;11(1):20. Published 2022 Apr 4. doi:10.1186/s40164-022-00275-0(IF:5.133)
[24] Gao Z, Wang T, Li R, et al. The discovery of a novel series of potential ERRα inverse agonists based on p-nitrobenzenesulfonamide template for triple-negative breast cancer in vivo. J Enzyme Inhib Med Chem. 2022;37(1):125-134. doi:10.1080/14756366.2021.1995728(IF:5.051)
[25] Liu ZZ, Duan XX, Yuan MC, et al. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci. 2022;294:120370. doi:10.1016/j.lfs.2022.120370(IF:5.037)
[26] Wu Z, Wang Q, Yang H, et al. Discovery of Natural Products Targeting NQO1 via an Approach Combining Network-Based Inference and Identification of Privileged Substructures. J Chem Inf Model. 2021;61(5):2486-2498. doi:10.1021/acs.jcim.1c00260(IF:4.956)
[27] Yang X, Miao BS, Wei CY, et al. Lymphoid-specific helicase promotes the growth and invasion of hepatocellular carcinoma by transcriptional regulation of centromere protein F expression. Cancer Sci. 2019;110(7):2133-2144. doi:10.1111/cas.14037(IF:4.751)
[28] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[29] Qin F, Zhang W, Zhang M, et al. Adipose-Derived Stem Cells Improve the Aging Skin of Nude Mice by Promoting Angiogenesis and Reducing Local Tissue Water. Aesthet Surg J. 2021;41(7):NP905-NP913. doi:10.1093/asj/sjab001(IF:4.283)
[30] Luo H, Zheng J, Chen Y, et al. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro. Front Microbiol. 2020;11:821. Published 2020 Apr 23. doi:10.3389/fmicb.2020.00821(IF:4.236)
[31] Ma H, Ding Z, Xie Y, et al. Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicol Appl Pharmacol. 2022;438:115910. doi:10.1016/j.taap.2022.115910(IF:4.219)
[32] Peng X, Wang K, Zhang C, et al. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics. Free Radic Res. 2021;55(11-12):1080-1093. doi:10.1080/10715762.2021.2018426(IF:4.148)
[33] Niu Y, Liu F, Wang X, et al. miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis. Onco Targets Ther. 2021;14:3649-3658. Published 2021 Jun 4. doi:10.2147/OTT.S304117(IF:4.147)
[34] Sun J, Zhou YQ, Xu BY, et al. STING/NF-κB/IL-6-Mediated Inflammation in Microglia Contributes to Spared Nerve Injury (SNI)-Induced Pain Initiation [published online ahead of print, 2021 Nov 2]. J Neuroimmune Pharmacol. 2021;10.1007/s11481-021-10031-6. doi:10.1007/s11481-021-10031-6(IF:4.147)
[35] Duan H, Lei Z, Xu F, et al. PARK2 Suppresses Proliferation and Tumorigenicity in Non-small Cell Lung Cancer. Front Oncol. 2019;9:790. Published 2019 Aug 23. doi:10.3389/fonc.2019.00790(IF:4.137)
[36] Liu Q, Tian R, Yu P, Shu M. miR-221/222 suppression induced by activation of the cAMP/PKA/CREB1 pathway is required for cAMP-induced bidirectional differentiation of glioma cells. FEBS Lett. 2021;595(22):2829-2843. doi:10.1002/1873-3468.14208(IF:4.124)
[37] Zeng WJ, Lu C, Shi Y, et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 2020;1867(10):118795. doi:10.1016/j.bbamcr.2020.118795(IF:4.105)
[38] Pan H, Chai W, Liu X, Yu T, Sun L, Yan M. DYNC1H1 regulates NSCLC cell growth and metastasis by IFN-γ-JAK-STAT signaling and is associated with an aberrant immune response. Exp Cell Res. 2021;409(1):112897. doi:10.1016/j.yexcr.2021.112897(IF:3.905)
[39] Qin F, Huang J, Zhang W, et al. The Paracrine Effect of Adipose-Derived Stem Cells Orchestrates Competition between Different Damaged Dermal Fibroblasts to Repair UVB-Induced Skin Aging. Stem Cells Int. 2020;2020:8878370. Published 2020 Dec 17. doi:10.1155/2020/8878370(IF:3.869)
[40] Wang L, Hu D, Xie B, Xie L. Blockade of Myd88 signaling by a novel MyD88 inhibitor prevents colitis-associated colorectal cancer development by impairing myeloid-derived suppressor cells. Invest New Drugs. 2022;40(3):506-518. doi:10.1007/s10637-022-01218-6(IF:3.850)
[41] Xie H, Zhang C, Zhang J, et al. An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biol Int. 2022;46(1):129-138. doi:10.1002/cbin.11710(IF:3.612)
[42] Li X, Wang X, Miao L, Guo Y, Yuan R, Tian H. Design, synthesis, and neuroprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opened derivatives. Biochem Biophys Res Commun. 2021;556:99-105. doi:10.1016/j.bbrc.2021.03.171(IF:3.575)
[43] Zhu Y, Wu H, Yang X, Xiong Z, Zhao T, Gan X. LINC00514 facilitates cell proliferation, migration, invasion, and epithelial-mesenchymal transition in non-small cell lung cancer by acting on the Wnt/β-catenin signaling pathway. Bioengineered. 2022;13(5):13654-13666. doi:10.1080/21655979.2022.2084246(IF:3.269)
[44] Wang XH, Gao JW, Bao JP, et al. GATA4 promotes the senescence of nucleus pulposus cells via NF-κB pathway. Arch Gerontol Geriatr. 2022;101:104676. doi:10.1016/j.archger.2022.104676(IF:3.250)
[45] Huang D, Xiong M, Xu X, et al. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem Biophys Res Commun. 2020;529(2):289-295. doi:10.1016/j.bbrc.2020.05.226(IF:2.985)
[46] Ma H, Song X, Huang P, et al. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res Genet Toxicol Environ Mutagen. 2021;865:503337. doi:10.1016/j.mrgentox.2021.503337(IF:2.873)
[47] Wang D, Xue Z, Wu H, Shi G, Feng S, Zhao L. Hepatoprotective effect and structural analysis of Hedysarum polysaccharides in vivo and in vitro [published online ahead of print, 2022 Apr 28]. J Food Biochem. 2022;e14188. doi:10.1111/jfbc.14188(IF:2.720)
[48] Xiao L, Zhang S, Zheng Q, Zhang S. Dysregulation of KIF14 regulates the cell cycle and predicts poor prognosis in cervical cancer: a study based on integrated approaches. Braz J Med Biol Res. 2021;54(11):e11363. Published 2021 Sep 3. doi:10.1590/1414-431X2021e11363(IF:2.590)
[49] Li T, Liu Y, Zhang Q, Sun W, Dong Y. A steroid-induced osteonecrosis model established using an organ-on-a-chip platform. Exp Ther Med. 2021;22(4):1070. doi:10.3892/etm.2021.10504(IF:2.447)
[50] Zheng GD, Hu PJ, Chao YX, et al. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr. 2019;7(3):1104-1112. Published 2019 Feb 10. doi:10.1002/fsn3.953(IF:1.747)
[51] Ying J, Huang HH, Zhang MM, Chen JF. Up-regulation of SOCS4 promotes cell proliferation and migration in esophageal squamous cell carcinoma. Transl Cancer Res. 2021;10(5):2416-2427. doi:10.21037/tcr-21-700(IF:1.241)