细胞凋亡产品


细胞凋亡产品

简要描述:上海金畔生物科技有限公司细胞凋亡产品专业代理,具体产品信息欢迎电询:021-50837765

订购

详细介绍

产品咨询

上海金畔生物科技有限公司细胞凋亡产品专业代理,具体产品信息欢迎电询:

细胞凋亡产品订购

细胞凋亡(apoptosis)一般是指机体细胞在发育过程中或在某些因素作用下,通过细胞内

基因及其产物的调控而发生的一种程序性细胞死亡(programmed cell death)。细胞凋亡对

胚胎发育及形态发生(morphogenesis)、组织内正常细胞群的稳定、机体的防御和免疫反

应、疾病或中毒时引起的细胞损伤、老化、肿瘤的发生进展起着重要作用,并具有潜在的治

疗意义。

细胞凋亡途径中各事件的发生是有时序性的,即各事件按先后顺序依次发生,zui终导致凋亡

小体的出现,细胞随着发生凋亡。典型特征为:细胞膜PS(磷脂酰丝氨酸)的外翻;线粒体

膜电位的丧失;细胞核凝缩和断裂。

 

 

三、TUNEL(Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling

细胞凋亡晚期, 染色体DNA双链断裂或单链断裂而产生大量的粘性3-OH末端,可在脱氧核糖

核苷酸末端转移酶(TdT)的作用下,将荧光素/酶标记的dUTP结合到DNA的3-末端,从而可

进行凋亡细胞的检测,这类方法称为脱氧核糖核苷酸末端转移酶介导的缺口末端标记法

(terminal -deoxynucleotidyl transferase mediated nick end labeling, TUNEL)。

由于正常的或正在增殖的细胞几乎没有DNA的断裂,因而没有3-OH形成,很少能够被染色。

TUNEL实际上是分子生物学与形态学相结合的研究方法,对完整的单个凋亡细胞核或凋亡小

体进行原位染色,能准确地反应细胞凋亡典型的生物化学和形态特征,可用于石蜡包埋组织

切片、冰冻组织切片、培养的细胞和从组织中分离的细胞的细胞形态测定,并可检测出极少

量的凋亡细胞,因而在细胞凋亡的研究中被广泛采用。



产品编号 产品名称 规格
40306ES20 TUNEL 细胞凋亡检测试剂盒(FITC) 20T
40306ES50 TUNEL 细胞凋亡检测试剂盒(FITC) 50T
40306ES60 TUNEL 细胞凋亡检测试剂盒(FITC) 100T
40307ES20 TUNEL 细胞凋亡检测试剂盒( Alexa Fluor 488) 20T
40307ES50 TUNEL 细胞凋亡检测试剂盒( Alexa Fluor 488) 50T
40307ES60 TUNEL细胞凋亡检测试剂盒( Alexa Fluor 488) 100T
40308ES20 TUNEL细胞凋亡检测试剂盒(Alexa Fluor 647) 20T
40308ES50 TUNEL 细胞凋亡检测试剂盒(Alexa Fluor 647) 50T
40308ES60 TUNEL细胞凋亡检测试剂盒(Alexa Fluor 647) 100T
     
其他相关产品:    
     
产品编号 产品名称 规格
40301ES50 细胞周期与细胞凋亡检测试剂盒 50T
40301ES60 细胞周期与细胞凋亡检测试剂盒 100T
40711ES10 PI(Propidium iodide)碘化丙啶 10mg
40711ES60 PI(Propidium iodide)碘化丙啶 100mg
40712ES08 Rhodamine 123 罗丹明123 5mg
40727ES10 DAPI 10mg
40728ES10 DAPI溶液 10ml
40728ES50 DAPI溶液 50ml
40729ES25 Hoechst 33258 25mg
40730ES10 Hoechst 33258 溶液 10ml
40730ES50 Hoechst 33258 溶液 50ml
40731ES25 Hoechst 33342 25mg
40732ES10 Hoechst 33342 溶液 10ml
40732ES50 Hoechst 33342 溶液 50ml

上海金畔生物科技有限公司

上海细胞凋亡产品订购


上海细胞凋亡产品订购

简要描述:上海金畔生物科技有限公司细胞凋亡产品专业代理,具体产品信息欢迎电询:021-50837765

细胞凋亡产品订购

详细介绍

产品咨询

上海金畔生物科技有限公司细胞凋亡产品专业代理,具体产品信息欢迎电询:

细胞凋亡产品订购

细胞凋亡(apoptosis)一般是指机体细胞在发育过程中或在某些因素作用下,通过细胞内

基因及其产物的调控而发生的一种程序性细胞死亡(programmed cell death)。细胞凋亡对

胚胎发育及形态发生(morphogenesis)、组织内正常细胞群的稳定、机体的防御和免疫反

应、疾病或中毒时引起的细胞损伤、老化、肿瘤的发生进展起着重要作用,并具有潜在的治

疗意义。

细胞凋亡途径中各事件的发生是有时序性的,即各事件按先后顺序依次发生,zui终导致凋亡

小体的出现,细胞随着发生凋亡。典型特征为:细胞膜PS(磷脂酰丝氨酸)的外翻;线粒体

膜电位的丧失;细胞核凝缩和断裂。

 

 

 

二、线粒体膜电位变化的检测

在细胞凋亡的过程中往往伴随着线粒体跨膜电位的破坏,这被广泛认为是细胞凋亡级联反应

过程中zui早发生的事件之一。它发生在细胞核凋亡特征(染色质浓缩、DNA断裂)出现之前

,一旦线粒体跨膜电位崩溃,则细胞凋亡不可逆转。线粒体跨膜电位的存在,使一些亲脂性

阳离子荧光染料如 Rhodamine 123、JC-1、JC-10等可结合到线粒体基质,其荧光的增强或

减弱说明线粒体内膜电负性的增高或降低。

JC-1是一种广泛用于检测线粒体膜电位△Ψm 的理想荧光探针,表现出电势依赖性的积聚在

线粒体内。正常线粒体内,JC-1聚集在线粒体基质中形成聚合物,聚合物发出强烈的红色荧

光(Ex=585 nm, Em=590 nm);而凋亡细胞,线粒体跨膜电位去极化,JC-1从线粒体内释放

,浓度降低,逆转为发射绿色荧光的单体形式。因此颜色的变化非常直接的反映出线粒体膜

电位的变化。线粒体的去极化程度也可以通过红/绿荧光强度的比例来衡量。JC-1的流式检

测是比较常见的一种方法。

 

产品编号 产品名称 规格
40705ES03 JC-1荧光探针 1mg
40705ES08 JC-1荧光探针 5mg
40707ES03 JC-10荧光探针 1mg
40707ES08 JC-10荧光探针 5mg
40706ES60 JC-1线粒体膜电位检测试剂盒 100T



上海金畔生物科技有限公司

TUNEL细胞凋亡检测试剂盒(FITC)|TUNEL Apoptosis Detection Kit(FITC)

TUNEL细胞凋亡检测试剂盒(FITC)|TUNEL Apoptosis Detection Kit(FITC)

产品说明书

FAQ

COA

已发表文献

产品描述

细胞在发生凋亡时,会激活一些DNA内切酶,这些内切酶会切断核小体间的基因组DNA。细胞凋亡时抽提DNA进行电泳检测,可以发现180-200 bp的DNA ladder。 

TUNEL (TdT mediated dUTP Nick End Labeling)细胞凋亡检测试剂盒(FITC)可以用来检测组织细胞在凋亡晚期过程中细胞核DNA的断裂情况。其原理是在末端脱氧核糖核苷酸转移酶(Terminal Deoxynucleotidyl Transferase, TdT)的作用下,在基因组DNA断裂时暴露出的3´-羟基(3´-OH)末端掺入FITC-12-dUTP,从而可以用荧光显微镜或流式细胞仪检测。

本试剂盒对标记反应进行了优化,采用最佳比例的FITC-12-dUTP和未标记dNTP进行3’-OH末端的核苷酸掺入,使得同一个断裂的DNA片段末端可以形成更长的“标记尾巴”。该“标记尾巴”减少了相邻掺入dNTP上标记基团的空间位阻,增加每个断裂片段上的荧光基团数目,降低荧光基团相邻后可能造成的聚集和淬灭,从而提高检测灵敏度,减少非特异性反应。

本试剂盒应用范围广,可以用于检测冷冻或石蜡切片中的细胞凋亡情况,也可以检测培养的贴壁细胞或悬浮细胞的凋亡情况。

 

产品组分

编号

组分

产品编号/规格

40306ES20(20T)

40306ES50(50T)

40306ES60(100T)

40306-A

5×Equilibration Buffer

750 μL

1.25 mL×2

1.25 mL×3

40306-B

FITC-12-dUTP Labeling Mix

100 μL

250 μL

250 μL×2

40306-C

Recombinant TdT Enzyme

20 μL

50 μL

50 μL×2

40306-D

Proteinase K (2 mg/mL)

40 μL

100 μL

100 μL×2

40306-E

DNase I (1 U/ μL)

5 μL

12.5 μL

25 μL

40306-F

10 × DNase I Buffer

100 μL

250 μL

500 μL

 

运输与保存方法

冰袋(wet ice)运输。

本试剂盒储存在-20℃FITC-12-dUTP Labling Mix避光储存于-20℃,保质期为年。

 

注意事项

1)需自备用于洗涤细胞的PBS,用于封片的抗荧光淬灭封片液,用于固定的4%多聚甲醛。

2)如需染核,需自备DAPI(2 μg/mL)或PI(1 μg/mL)

3)如果用流式细胞仪,自备PI(1 μg/mL)DNase Free RNase A。

4)为了您的安全和健康,请穿实验服并戴一次性手套操作。

5)本产品仅作科研用途!

 

操作步骤

一、样品准备

A. 石蜡包埋组织切片

1. 室温下将石蜡组织切片放入二甲苯中浸泡5 min,重复一次,以彻底脱掉石蜡。

2. 室温下用100%乙醇浸泡切片5 min,重复一次。

3. 室温下用梯度乙醇(90、80、70%)各浸洗1次,每次3 min。

4. 用PBS轻轻润洗切片,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育20 min。

注:Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本,轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

B. 组织冰冻切片

1. 将玻片浸没在4%多聚甲醛溶液(溶于PBS)中固定,室温下孵育15 min。

2. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。

3. 将玻片浸没在PBS溶液中,室温孵育15 min。

4. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育10 min。

【注】Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本2-3次。

8. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

C. 细胞样品

【细胞爬片的准备】

Lab-Tek载玻片小室(Chamber Slides)上培养贴壁细胞。在凋亡诱导处理之后,用PBS洗2遍载玻片。

【细胞涂片的制备(以多聚赖氨酸包被的载玻片为例)】

1. 准备多聚赖氨酸包被的载玻片:吸取50–100 μL 0.01% (w/v)多聚赖氨酸水溶液,滴至每一片预清洗过的玻璃载玻片的表面。在将要用于固定细胞的区域将多聚赖氨酸溶液涂散为一薄层。待载玻片晾干之后,迅速用去离子水漂洗,然后让包被后的载玻片在空气中晾干30-60 min。包被后的载玻片能在室温储存数月。

2. 以约2×107个细胞/mL的浓度将细胞重悬于PBS中,吸取50-100 μL细胞悬液滴于多聚赖氨酸包被的载玻片上,用一片干净的载玻片轻柔的涂开细胞悬液。

按照以下步骤对细胞样品进行处理:

1. 固定细胞,将载玻片浸入装有4%新鲜配制于PBS中的多聚甲醛的染色缸中,在4℃放置25 min。

2. 洗涤载玻片,将其浸入PBS中,室温放置5 min。重复用PBS洗一次。

3. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或指甲油在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

4. 每个样本上可浸于0.2%配制于PBS中的Triton X-100溶液中,室温孵育5 min进行通透处理Proteinase K处理容易使细胞脱落)

5. 在盛有PBS溶液的敞口烧杯中浸没清洗样本2-3次。

6. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

二、DNA酶处理阳性对照的步骤(可选)

在样本通透处理后,用DNA酶I处理细胞来准备阳性对照载玻片。该流程通常会引起被处理的大多数细胞显现绿色荧光。

【注】DNA酶I处理固定的细胞会引起染色体DNA的断裂,产生许多可标记的DNA 3’-末端。

1. 按1:10的比例用去离子水稀释10×DNase I Buffer(每个样本需用200 μL 1×DNase I Buffer,即需要用20 μL 10×DNase I Buffer和180 μL去离子水混合稀释),取其中100 μL滴加到已通透的样本上,室温孵育5 min。 向剩余100 μL 1×DNase I Buffer中加1 μL DNase I (1U/μL),使其终浓度为10 U/mL。轻叩掉液体,加入100 μL含5.5-10 units/mL DNase I的缓冲液,室温孵育10 min。

2. 轻轻叩掉液体,加入100 μL 10 U/mL DNase I 的缓冲液,室温孵育10 min。

3. 轻叩载玻片,去掉多余的液体,并将载玻片在装有去离子水的染色缸中彻底洗3-4次。

【注】:阳性对照载玻片必须使用单独的染色缸,否则阳性对照载玻片上残余的DNase I 可能会在实验载玻片上引入高背景。

三、标记与检测

1. 按1:5的比例用去离子水稀释5×Equilibration Buffer。

2. 每个样本滴加100 μL 1×Equilibration Buffer使其全部覆盖待检样本区域,室温孵育10-30 min。或者将载玻片放入一个含有 1×Equilibration Buffer的缸中,保证缓冲液没过样本。在平衡细胞的同时在冰上解冻FITC-12-dUTP Labling Mix,并且依照表1,准备足够量的用于所有实验的和可选阳性对照反应的TdT孵育缓冲液。对于面积小于5 cm2的一个标准反应,其体积是50 μL,用50 μL乘以实验和阳性对照反应的数目来确定所需TdT孵育缓冲液的总体积。对于表面积更大的样本,可成比例的增大试剂体积。

1. 准备用于实验的和可选阳性对照反应的TdT孵育缓冲液

组分

体积(μL /50 μL体系)

ddH2O

34

5×Equilibration Buffer

10

FITC-12-dUTP Labling Mix

5

Recombinant TdT Enzyme

1

阴性对照体系:准备一份不含TdT酶的对照孵育缓冲液,用ddH2O替代TdT酶。

3. 在平衡后的区域周围用吸水纸洗掉100 μL 1×Equilibration Buffer中的大部分,然后在5 cm2面积的细胞上加入50 μL TdT孵育缓冲液。不要让细胞干掉。这之后的操作,载玻片要避光。

4. 把塑料盖玻片盖在细胞上以保证试剂的平均分布,在湿盒的底部放上用水浸湿的纸巾。将载玻片置于湿盒内,在37℃孵育60 min。将湿盒用铝箔纸包裹以避光。

注:塑料盖玻片在使用前可以切成两半。折起盖玻片的边缘以便于移除和操作。

5. 移除塑料盖玻片,并将切片置于PBS溶液中室温孵育5 min。

6. 轻轻去掉多余液体,换用新鲜的PBS溶液室温孵育5 min,重复一次。

7. 用滤纸轻轻擦掉样本周围及背面的PBS溶液。注意:为了降低背景,载玻片在用PBS洗一遍后,可再用含0.1% Triton X-1005 mg/mL BSA的PBS洗3次,每次5 min,这样可将游离的未反应标记物清除干净。

8. 样本在染色缸中染色,在黑暗中将载玻片浸入装有PI溶液(1 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。可选操作:样本在染色缸中染色,在黑暗中将载玻片浸入装有DAPI溶液(2 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。

9. 洗涤样本,将载玻片浸入去离子水中,室温放置5 min,重复2次,总共洗3次。

10. 叩干载玻片上多余的水并且用吸水纸擦拭细胞周边的区域。

11. 立即在荧光显微镜下分析样本,用标准的荧光过滤装置在520±20 nm的荧光下观察绿色荧光;在620 nm下观察PI的红色荧光,或在460 nm观察蓝色的DAPI。如有必要,载玻片能在4℃黑暗条件下存放过夜。PI/DAPI能将凋亡和未凋亡的细胞都染成红色/蓝色,只在凋亡的细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

四、利用流式细胞术检测悬浮细胞

1. 将3-5×106个细胞PBS在4℃离心(300×g)洗两次,然后重悬在0.5 mL PBS中

2. 固定细胞,加入5 mL 1%配制于PBS中的多聚甲醛溶液,冰上放置20 min。

3. 细胞在4℃,300×g离心10 min,去上清并且重悬于5mL PBS。重复洗一次,并用0.5 mL PBS重悬细胞。

4. 通透细胞,加入5 mL冰上预冷的70%乙醇,在-20℃孵育4小时。细胞能在70%乙醇中-20℃条件下保存一周,或者,细胞可用配制于PBS中的0.2% Triton X-100溶液通透,室温放置5 min。

5. 细胞在300×g离心10 min,并用5 mL PBS重悬。重复离心,并1 mL PBS重悬。

6. 转移2×106个细胞至一个1.5 mL的微量离心管。

7. 300×g离心10 min,去上清,并用80 μL 1×Equilibration Buffer重悬。室温孵育5 min。

8. 在平衡细胞的同时,在冰上融解FITC-12-dUTP标记混合物,并且依照表1,准备足够量的用于所有反应的TdT孵育缓冲液。对于2×106个细胞的一个标准反应,其体积是50 μL,用50μl乘上反应数目来确定所需TdT孵育缓冲液的总体积。

9. 细胞在300×g离心10 min,去上清并把沉淀重悬在50 μL TdT孵育缓冲液中,37℃孵育60 min,避光。每隔15 min用微量移液器轻轻重悬细胞。

10. 加入1mL ,20 mM EDTA终止反应,用微量移液器轻柔混匀。

11. 300×g离心10 min,去上清并把沉淀重悬在1mL配制于PBS中0.1% Triton X-100溶液,其中含5 mg/mL BSA,重复一次,总共洗2次。

12. 300×g离心10 min,去上清并把细胞沉淀重悬在0.5 mL PI溶液(1 μg/mL)中,其中包含250 μg 无DNA酶的Rnase A。

13. 在黑暗中室温孵育细胞30 min。

14. 用流式细胞仪分析细胞,测量520±20 nm的FITC-12-dUTP的绿色荧光和>620 nm的PI红色荧光。PI将凋亡和未凋亡的细胞都染成红色,只在凋亡细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

相关产品

产品名称

产品编号

规格

Annexin V-FITC/PI 细胞凋亡检测试剂盒

40302ES20

20 T

40302ES50

50 T

40302ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

TUNEL细胞凋亡检测试剂盒(FITC)

40306ES20

20 T

40306ES50

50 T

40306ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 488)

40307ES20

20 T

40307ES50

50 T

40307ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 640)

40308ES20

20 T

40308ES50

50 T

40308ES60

100 T

 

 

   HB210715

Q共染之后TUNEL 的信号就不在核内了,感觉都弥散了。TUNEL 染色就按照说明书来的,DAPI 之前孵育另外的一抗?

A可能是后期洗涤次数过多,建议减少洗涤次数,或者洗涤动作轻柔一些。

QTUNEL 可以和 DAPI 一起染色细胞吗?

A可以。

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

QTunel 细胞凋亡检测,细胞爬片好凋亡处理后需要在固定通透吗?

A需要通透,因为 TdT 酶需要经过通透的细胞才能进入细胞内,而 Annexin V  JC-1 是不能进行染色固定的。

QTunel 细胞凋亡检测时,贴壁细胞必须要先消化下来再染色吗?

A不需要,对于贴壁细胞,要先用PBS 洗 2-3 次,然后直接用多聚甲醛固定细胞, 通透处理,染色观察。

Q:固定时间可以增加吗?

A: 4℃放置25 min左右,选择4%多聚甲醛作固定液,乙醇、甲醇、酸性固定液,会导致标记效率低;固定时间不宜过长,过长导致交联程度过高,进而降低标记效率

[1] Chen J, He W, Hu X, et al. A role for ErbB signaling in the induction of reactive astrogliosis. Cell Discov. 2017;3:17044. Published 2017 Dec 5. doi:10.1038/celldisc.2017.44(IF:10.849)
[2] Pan S, Pei L, Zhang A, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials. 2020;230:119606. doi:10.1016/j.biomaterials.2019.119606(IF:10.273)
[3] Liao Y, Li H, Cao H, et al. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell. 2021;12(3):194-212. doi:10.1007/s13238-020-00750-6(IF:10.164)
[4] Li J, Kong D, Wang Q, et al. Niacin ameliorates ulcerative colitis via prostaglandin D2-mediated D prostanoid receptor 1 activation [published correction appears in EMBO Mol Med. 2020 Dec 7;12(12):e13487]. EMBO Mol Med. 2017;9(5):571-588. doi:10.15252/emmm.201606987(IF:9.249)
[5] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[6] Fu H, Zhang W, Yuan Q, et al. PAK1 Promotes the Proliferation and Inhibits Apoptosis of Human Spermatogonial Stem Cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT Pathways. Mol Ther Nucleic Acids. 2018;12:769-786. doi:10.1016/j.omtn.2018.06.006(IF:8.886)
[7] Aung LHH, Chen X, Cueva Jumbo JC, et al. Cardiomyocyte mitochondrial dynamic-related lncRNA 1 (CMDL-1) may serve as a potential therapeutic target in doxorubicin cardiotoxicity. Mol Ther Nucleic Acids. 2021;25:638-651. Published 2021 Aug 19. doi:10.1016/j.omtn.2021.08.006(IF:8.886)
[8] Qian Y, Wang Y, Jia F, et al. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials. 2019;188:96-106. doi:10.1016/j.biomaterials.2018.10.003(IF:8.806)
[9] Liu Q, Qian Y, Li P, et al. 131I-Labeled Copper Sulfide-Loaded Microspheres to Treat Hepatic Tumors via Hepatic Artery Embolization. Theranostics. 2018;8(3):785-799. Published 2018 Jan 1. doi:10.7150/thno.21491(IF:8.537)
[10] Wang H, Yuan Q, Niu M, et al. Transcriptional regulation of P63 on the apoptosis of male germ cells and three stages of spermatogenesis in mice. Cell Death Dis. 2018;9(2):76. Published 2018 Jan 23. doi:10.1038/s41419-017-0046-z(IF:8.469)
[11] Huang J, Yu W, He Q, et al. Autophagy facilitates age-related cell apoptosis-a new insight from senile cataract. Cell Death Dis. 2022;13(1):37. Published 2022 Jan 10. doi:10.1038/s41419-021-04489-8(IF:8.469)
[12] Zhou M, Liu X, Qiukai E, et al. Long non-coding RNA Xist regulates oocyte loss via suppressing miR-23b-3p/miR-29a-3p maturation and upregulating STX17 in perinatal mouse ovaries. Cell Death Dis. 2021;12(6):540. Published 2021 May 25. doi:10.1038/s41419-021-03831-4(IF:8.469)
[13] Wang YJ, Liu MG, Wang JH, et al. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep. 2020;33(6):108369. doi:10.1016/j.celrep.2020.108369(IF:8.109)
[14] Wan Y, Feng B, You Y, et al. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep. 2020;33(5):108346. doi:10.1016/j.celrep.2020.108346(IF:8.109)
[15] Yang X, Zhao X, Zhu Y, et al. FKBP3 Induces Human Immunodeficiency Virus Type 1 Latency by Recruiting Histone Deacetylase 1/2 to the Viral Long Terminal Repeat. mBio. 2021;12(4):e0079521. doi:10.1128/mBio.00795-21(IF:7.867)
[16] Sun Z, Huang J, Su L, et al. Arf6-mediated macropinocytosis-enhanced suicide gene therapy of C16TAB-condensed Tat/pDNA nanoparticles in ovarian cancer. Nanoscale. 2021;13(34):14538-14551. Published 2021 Sep 2. doi:10.1039/d1nr03974a(IF:7.790)
[17] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[18] Tang K, Qin W, Wei R, et al. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence. Pharmacol Res. 2022;179:106123. doi:10.1016/j.phrs.2022.106123(IF:7.658)
[19] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[20] Liu B, Qiao G, Han Y, et al. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater. 2020;117:361-373. doi:10.1016/j.actbio.2020.09.040(IF:7.242)
[21] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[22] Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ. Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca2+/calmodulin-dependent protein kinase II. Redox Biol. 2018;19:250-262. doi:10.1016/j.redox.2018.08.008(IF:7.126)
[23] Zhang C, Chen H, He Q, et al. Fibrinogen/AKT/Microfilament Axis Promotes Colitis by Enhancing Vascular Permeability. Cell Mol Gastroenterol Hepatol. 2021;11(3):683-696. doi:10.1016/j.jcmgh.2020.10.007(IF:7.076)
[24] Zeng M, He Y, Gao X, et al. Characteristics and functions of glyceraldehyde 3-phosphate dehydrogenase S-nitrosylation during controlled aging of elm and Arabidopsis seeds. J Exp Bot. 2021;72(20):7020-7034. doi:10.1093/jxb/erab322(IF:6.992)
[25] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[26] Chen H, Guan B, Chen X, et al. Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO-MMP-9 Pathway. Transl Stroke Res. 2018;9(5):515-529. doi:10.1007/s12975-017-0598-3(IF:6.829)
[27] Liu Y, Yang Y, Suo Y, et al. Inducible caspase-9 suicide gene under control of endogenous oct4 to safeguard mouse and human pluripotent stem cell therapy. Mol Ther Methods Clin Dev. 2022;24:332-341. Published 2022 Feb 1. doi:10.1016/j.omtm.2022.01.014(IF:6.698)
[28] Zhang P, Han X, Zhang X, Zhu X. Lactobacillus acidophilus ATCC 4356 Alleviates Renal Ischemia-Reperfusion Injury Through Antioxidant Stress and Anti-inflammatory Responses and Improves Intestinal Microbial Distribution. Front Nutr. 2021;8:667695. Published 2021 May 11. doi:10.3389/fnut.2021.667695(IF:6.576)
[29] Hu Z, Zhang H, Yi B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020;11(1):73. Published 2020 Jan 29. doi:10.1038/s41419-020-2256-z(IF:6.304)
[30] Liu J, Liu B, Yuan P, et al. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol Environ Saf. 2021;214:112005. doi:10.1016/j.ecoenv.2021.112005(IF:6.291)
[31] Liu H, Zhou W, Guo L, et al. Quercetin protects against palmitate-induced pancreatic β-cell apoptosis by restoring lysosomal function and autophagic flux [published online ahead of print, 2022 May 25]. J Nutr Biochem. 2022;107:109060. doi:10.1016/j.jnutbio.2022.109060(IF:6.048)
[32] Xie L, Huang W, Fang Z, et al. CircERCC2 ameliorated intervertebral disc degeneration by regulating mitophagy and apoptosis through miR-182-5p/SIRT1 axis. Cell Death Dis. 2019;10(10):751. Published 2019 Oct 3. doi:10.1038/s41419-019-1978-2(IF:5.959)
[33] Zhang C, He A, Liu S, et al. Inhibition of HtrA2 alleviated dextran sulfate sodium (DSS)-induced colitis by preventing necroptosis of intestinal epithelial cells. Cell Death Dis. 2019;10(5):344. Published 2019 Apr 24. doi:10.1038/s41419-019-1580-7(IF:5.959)
[34] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[35] Cen K, Chen M, He M, et al. Sporoderm-Broken Spores of Ganoderma lucidum Sensitizes Ovarian Cancer to Cisplatin by ROS/ERK Signaling and Attenuates Chemotherapy-Related Toxicity. Front Pharmacol. 2022;13:826716. Published 2022 Feb 21. doi:10.3389/fphar.2022.826716(IF:5.811)
[36] Mao Y, Tu R, Huang Y, et al. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development. 2019;146(13):dev174615. Published 2019 Jun 28. doi:10.1242/dev.174615(IF:5.763)
[37] Zhou F, Yuan Q, Zhang W, et al. MiR-663a Stimulates Proliferation and Suppresses Early Apoptosis of Human Spermatogonial Stem Cells by Targeting NFIX and Regulating Cell Cycle. Mol Ther Nucleic Acids. 2018;12:319-336. doi:10.1016/j.omtn.2018.05.015(IF:5.660)
[38] Yang C, Yao C, Tian R, et al. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling. Mol Ther Nucleic Acids. 2019;14:1-19. doi:10.1016/j.omtn.2018.10.012(IF:5.660)
[39] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[40] Xing J, Wang M, Hong J, et al. TRPM7 channel inhibition exacerbates pulmonary arterial hypertension through MEK/ERK pathway. Aging (Albany NY). 2019;11(12):4050-4065. doi:10.18632/aging.102036(IF:5.515)
[41] Liu G, Liu Q, Shen Y, et al. Early treatment with Resolvin E1 facilitates myocardial recovery from ischaemia in mice. Br J Pharmacol. 2018;175(8):1205-1216. doi:10.1111/bph.14041(IF:5.491)
[42] Wang Z, Wang Q, Xu G, et al. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol. 2020;17(11):1576-1589. doi:10.1080/15476286.2019.1709296(IF:5.350)
[43] Yang K, Wei M, Yang Z, et al. Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity. Cell Oncol (Dordr). 2020;43(6):1175-1190. doi:10.1007/s13402-020-00550-4(IF:5.304)
[44] Zhang L, Yao X, Ma M, et al. Protective Effect of l-Theanine against DSS-Induced Colitis by Regulating the Lipid Metabolism and Reducing Inflammation via the NF-κB Signaling Pathway. J Agric Food Chem. 2021;69(47):14192-14203. doi:10.1021/acs.jafc.1c05839(IF:5.279)
[45] Zhang C, Luo Y, He Q, Liu S, He A, Yan J. A pan-RAF inhibitor LY3009120 inhibits necroptosis by preventing phosphorylation of RIPK1 and alleviates dextran sulfate sodium-induced colitis. Clin Sci (Lond). 2019;133(8):919-932. Published 2019 Apr 16. doi:10.1042/CS20181081(IF:5.237)
[46] Ding X, Wang S, Wang Y, et al. Neonatal Heart Responds to Pressure Overload With Differential Alterations in Various Cardiomyocyte Maturation Programs That Accommodate Simultaneous Hypertrophy and Hyperplasia. Front Cell Dev Biol. 2020;8:596960. Published 2020 Nov 19. doi:10.3389/fcell.2020.596960(IF:5.186)
[47] Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. Exosomal MicroRNA-181a Derived From Mesenchymal Stem Cells Improves Gut Microbiota Composition, Barrier Function, and Inflammatory Status in an Experimental Colitis Model. Front Med (Lausanne). 2021;8:660614. Published 2021 Jun 24. doi:10.3389/fmed.2021.660614(IF:5.093)
[48] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[49] Li Y, Wu Y, Jiang K, et al. Mangiferin Prevents TBHP-Induced Apoptosis and ECM Degradation in Mouse Osteoarthritic Chondrocytes via Restoring Autophagy and Ameliorates Murine Osteoarthritis. Oxid Med Cell Longev. 2019;2019:8783197. Published 2019 Oct 15. doi:10.1155/2019/8783197(IF:4.868)
[50] Fan J, Chen M, Wang X, et al. Targeting Smox Is Neuroprotective and Ameliorates Brain Inflammation in Cerebral Ischemia/Reperfusion Rats. Toxicol Sci. 2019;168(2):381-393. doi:10.1093/toxsci/kfy300(IF:4.849)
[51] Wang Y, Duo D, Yan Y, He R, Wu X. Magnesium lithospermate B ameliorates hypobaric hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and its potential targets. Biomed Pharmacother. 2020;130:110560. doi:10.1016/j.biopha.2020.110560(IF:4.545)
[52] Huang R, Zhu Y, Lin L, Song S, Cheng L, Zhu R. Solid Lipid Nanoparticles Enhanced the Neuroprotective Role of Curcumin against Epilepsy through Activation of Bcl-2 Family and P38 MAPK Pathways. ACS Chem Neurosci. 2020;11(13):1985-1995. doi:10.1021/acschemneuro.0c00242(IF:4.486)
[53] Long J, Liu L, Zhou X, Lu X, Qin L. HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. J Oncol. 2022;2022:7130634. Published 2022 May 11. doi:10.1155/2022/7130634(IF:4.375)
[54] Li S, Liu M, Ma H, et al. Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res. 2021;14(1):17. Published 2021 Jan 21. doi:10.1186/s13048-020-00763-z(IF:4.234)
[55] Wen C, Li F, Guo Q, et al. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol. 2020;11:56. Published 2020 Jun 3. doi:10.1186/s40104-020-00463-0(IF:4.167)
[56] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[57] Li Z, Zhu J, Wang Y, et al. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy. Asian J Pharm Sci. 2020;15(4):482-491. doi:10.1016/j.ajps.2019.05.002(IF:4.016)
[58] Tang B, Song M, Xie X, et al. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Secreted by BMSCs Regulates Activated Astrocytes by Inhibiting NF-κB Signaling Pathway to Ameliorate Blood Brain Barrier Damage After Intracerebral Hemorrhage. Neurochem Res. 2021;46(9):2387-2402. doi:10.1007/s11064-021-03375-1(IF:3.996)
[59] Li Y, Han W, Wu Y, et al. Stabilization of Hypoxia Inducible Factor-1α by Dimethyloxalylglycine Promotes Recovery from Acute Spinal Cord Injury by Inhibiting Neural Apoptosis and Enhancing Axon Regeneration. J Neurotrauma. 2019;36(24):3394-3409. doi:10.1089/neu.2018.6364(IF:3.754)
[60] Zhou H, Li L, Sun H, et al. Remote Ischemic Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury after Hemorrhagic Shock by Increasing Autophagy. Int J Med Sci. 2021;18(4):873-882. Published 2021 Jan 1. doi:10.7150/ijms.51268(IF:3.738)
[61] Li S, Zeng M, Yang L, et al. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression. Int J Biochem Cell Biol. 2020;127:105826. doi:10.1016/j.biocel.2020.105826(IF:3.673)
[62] Ma X, Zhou Y, Qiao B, et al. Androgen aggravates liver fibrosis by activation of NLRP3 inflammasome in CCl4-induced liver injury mouse model. Am J Physiol Endocrinol Metab. 2020;318(5):E817-E829. doi:10.1152/ajpendo.00427.2019(IF:3.469)
[63] Zhao J, Zhao X, Tian J, et al. Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO-1 expression and activating ERK1/2 pathway. Life Sci. 2020;241:117160. doi:10.1016/j.lfs.2019.117160(IF:3.448)
[64] Zhang Y, Zhu Z, Huang S, et al. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int. 2019;19:198. Published 2019 Jul 29. doi:10.1186/s12935-019-0909-8(IF:3.439)
[65] Wang H, He F, Liang B, et al. p53-Dependent LincRNA-p21 Protects Against Proliferation and Anti-apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. J Cardiovasc Transl Res. 2021;14(3):426-440. doi:10.1007/s12265-020-10074-9(IF:3.312)
[66] Li Y, Zhou T, Su YF, et al. Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats. Asian J Androl. 2020;22(5):500-506. doi:10.4103/aja.aja_109_19(IF:3.285)
[67] Li X, Zhan J, Hou Y, et al. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. Am J Transl Res. 2019;11(10):6544-6552. Published 2019 Oct 15. (IF:3.266)
[68] Zeng L, Gu N, Chen J, Jin G, Zheng Y. IRX1 hypermethylation promotes heart failure by inhibiting CXCL14 expression. Cell Cycle. 2019;18(23):3251-3262. doi:10.1080/15384101.2019.1673099(IF:3.259)
[69] Li P, Hao L, Guo YY, et al. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons. Life Sci. 2018;202:70-77. doi:10.1016/j.lfs.2018.01.011(IF:3.234)
[70] Hu F, Guo L, Yu J, et al. Using Patient-Derived Xenografts to Explore the Efficacy of Treating Head-and-Neck Squamous Cell Carcinoma With Anlotinib. Pathol Oncol Res. 2021;27:1610008. Published 2021 Dec 9. doi:10.3389/pore.2021.1610008(IF:3.201)
[71] Song XY, Wang YY, Chu SF, et al. A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats. Acta Pharmacol Sin. 2016;37(4):444-452. doi:10.1038/aps.2015.132(IF:3.166)
[72] Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound‑targeted microbubble destruction‑mediated Galectin‑7‑siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med. 2021;47(2):677-687. doi:10.3892/ijmm.2020.4830(IF:3.098)
[73] Cai H, Han B, Hu Y, et al. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med. 2020;45(3):715-730. doi:10.3892/ijmm.2020.4453(IF:3.098)
[74] Zeng J, Zhao H, Chen B. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Exp Eye Res. 2019;189:107830. doi:10.1016/j.exer.2019.107830(IF:2.998)
[75] Li Y, Huang D, Zheng L, Cao H, Fan Z. Effect of microRNA-141 on the development of diabetic nephropathy through regulating AKT/AMPK signaling pathway by targeting insulin receptor substrate 2 [published online ahead of print, 2018 Nov 14]. J Cell Biochem. 2018;10.1002/jcb.28078. doi:10.1002/jcb.28078(IF:2.959)
[76] Lou Y, Huang Z, Wu H, Zhou Y. Tranilast attenuates lipopolysaccharide‑induced lung injury via the CXCR4/JAK2/STAT3 signaling pathway. Mol Med Rep. 2022;26(1):220. doi:10.3892/mmr.2022.12736(IF:2.952)
[77] Fan Y, Wu Y. Tetramethylpyrazine alleviates neural apoptosis in injured spinal cord via the downregulation of miR-214-3p. Biomed Pharmacother. 2017;94:827-833. doi:10.1016/j.biopha.2017.07.162(IF:2.759)
[78] Guo F, Xia T, Zhang Y, et al. Menstrual blood derived mesenchymal stem cells combined with Bushen Tiaochong recipe improved chemotherapy-induced premature ovarian failure in mice by inhibiting GADD45b expression in the cell cycle pathway. Reprod Biol Endocrinol. 2019;17(1):56. Published 2019 Jul 16. doi:10.1186/s12958-019-0499-2(IF:2.589)
[79] Weihong C, Bin C, Jianfeng Y. Transmembrane protein 126B protects against high fat diet (HFD)-induced renal injury by suppressing dyslipidemia via inhibition of ROS. Biochem Biophys Res Commun. 2019;509(1):40-47. doi:10.1016/j.bbrc.2018.12.003(IF:2.559)
[80] Wang Y, Wang Q, Zhang L, et al. Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun. 2017;490(2):231-238. doi:10.1016/j.bbrc.2017.06.027(IF:2.466)
[81] Zhou T, Liang Y, Jiang L, Yu T, Zeng C, Tao E. Mild hypothermia protects against oxygen glucose deprivation/reoxygenation-induced apoptosis via the Wnt/β-catenin signaling pathway in hippocampal neurons. Biochem Biophys Res Commun. 2017;486(4):1005-1013. doi:10.1016/j.bbrc.2017.03.153(IF:2.466)
[82] Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2 [published online ahead of print, 2022 Mar 1]. Biotechnol Appl Biochem. 2022;10.1002/bab.2332. doi:10.1002/bab.2332(IF:2.431)
[83] Zhang Y, Song Y, Li C, et al. Brother of regulator of imprinted sites inhibits cisplatin-induced DNA damage in non-small cell lung cancer. Oncol Lett. 2020;20(5):251. doi:10.3892/ol.2020.12114(IF:2.311)
[84] Zhang D, Zhou XH, Zhang J, et al. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 2015;468(4):561-567. doi:10.1016/j.bbrc.2015.10.129(IF:2.297)
[85] Zhou Q, Song C, Liu X, Qin H, Miao L, Zhang X. Peptidylarginine deiminase 4 overexpression resensitizes MCF-7/ADR breast cancer cells to adriamycin via GSK3β/p53 activation. Cancer Manag Res. 2019;11:625-636. Published 2019 Jan 10. doi:10.2147/CMAR.S191353(IF:2.243)
[86] Su Y, Tian H, Wei L, Fu G, Sun T. Integrin β3 inhibits hypoxia-induced apoptosis in cardiomyocytes. Acta Biochim Biophys Sin (Shanghai). 2018;50(7):658-665. doi:10.1093/abbs/gmy056(IF:2.224)
[87] Zhang W, Yin L, Tao X, et al. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environ Toxicol Pharmacol. 2016;45:193-201. doi:10.1016/j.etap.2016.06.002(IF:2.187)
[88] Li JH, Wei TT, Guo L, et al. Curcumin protects thymus against D-galactose-induced senescence in mice. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(2):411-420. doi:10.1007/s00210-020-01945-8(IF:2.050)
[89] Shang D, Wu Y, Ding Y, et al. Identification of a pyridine derivative inducing senescence in ovarian cancer cell lines via P21 activation. Clin Exp Pharmacol Physiol. 2018;45(5):452-460. doi:10.1111/1440-1681.12891(IF:2.010)
[90] Li P, Liu Q, Wang X, Huang G, Song S. 18F-Deoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography (PET/CT) Monitoring of Dynamic Growth Characteristics of Walker-256 Tumor Models in 3 Different Locations in Rats. Med Sci Monit. 2019;25:558-564. Published 2019 Jan 19. doi:10.12659/MSM.909286(IF:1.980)
[91] Yang R, Cai X, Li J, Liu F, Sun T. Protective Effects of MiR-129-5p on Acute Spinal Cord Injury Rats. Med Sci Monit. 2019;25:8281-8288. Published 2019 Nov 4. doi:10.12659/MSM.916731(IF:1.980)
[92] Huang L, Jin K, Lan H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol Lett. 2019;17(4):3842-3850. doi:10.3892/ol.2019.10052(IF:1.871)
[93] Liao X, Zhou S, Zong J, Wang Z. Sevoflurane exerts protective effects on liver ischemia/reperfusion injury by regulating NFKB3 expression via miR-9-5p. Exp Ther Med. 2019;17(4):2632-2640. doi:10.3892/etm.2019.7272(IF:1.448)
[94] Chen H, Lu Q, Chen C, et al. β-catenin regulates effects of miR-24 on the viability and autophagy of glioma cells. Exp Ther Med. 2019;18(2):1285-1290. doi:10.3892/etm.2019.7680(IF:1.448)
[95] Liu ZC, Meng LQ, Song JH, Gao J. Dynamic protein expression of NF-κB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med. 2018;16(5):3903-3908. doi:10.3892/etm.2018.6715(IF:1.410)
[96] Ma L, Cao Y, Hu J, Chu M. High expression of the CKIP-1 gene might promote apoptosis through downregulation of the Ras/ERK signalling pathway in the intestinal type of gastric cancer. J Int Med Res. 2020;48(3):300060520909025. doi:10.1177/0300060520909025(IF:1.287)
[97] Zhou PH, Shi L, Qiu B. Protective effect of controlled release of cytokine response modifier A from chitosan microspheres on rat chondrocytes from interleukin-1β induced inflammation and apoptosis. Exp Ther Med. 2017;14(4):3170-3178. doi:10.3892/etm.2017.4884(IF:1.261)
[98] Zhang C , Wang K , Li C , et al. Stress-induced cytotoxicity of chiral Ag nanoclusters. J Mater Chem B. 2014;2(40):6931-6938. doi:10.1039/c4tb01067a(IF:0.000)

产品描述

细胞在发生凋亡时,会激活一些DNA内切酶,这些内切酶会切断核小体间的基因组DNA。细胞凋亡时抽提DNA进行电泳检测,可以发现180-200 bp的DNA ladder。 

TUNEL (TdT mediated dUTP Nick End Labeling)细胞凋亡检测试剂盒(FITC)可以用来检测组织细胞在凋亡晚期过程中细胞核DNA的断裂情况。其原理是在末端脱氧核糖核苷酸转移酶(Terminal Deoxynucleotidyl Transferase, TdT)的作用下,在基因组DNA断裂时暴露出的3´-羟基(3´-OH)末端掺入FITC-12-dUTP,从而可以用荧光显微镜或流式细胞仪检测。

本试剂盒对标记反应进行了优化,采用最佳比例的FITC-12-dUTP和未标记dNTP进行3’-OH末端的核苷酸掺入,使得同一个断裂的DNA片段末端可以形成更长的“标记尾巴”。该“标记尾巴”减少了相邻掺入dNTP上标记基团的空间位阻,增加每个断裂片段上的荧光基团数目,降低荧光基团相邻后可能造成的聚集和淬灭,从而提高检测灵敏度,减少非特异性反应。

本试剂盒应用范围广,可以用于检测冷冻或石蜡切片中的细胞凋亡情况,也可以检测培养的贴壁细胞或悬浮细胞的凋亡情况。

 

产品组分

编号

组分

产品编号/规格

40306ES20(20T)

40306ES50(50T)

40306ES60(100T)

40306-A

5×Equilibration Buffer

750 μL

1.25 mL×2

1.25 mL×3

40306-B

FITC-12-dUTP Labeling Mix

100 μL

250 μL

250 μL×2

40306-C

Recombinant TdT Enzyme

20 μL

50 μL

50 μL×2

40306-D

Proteinase K (2 mg/mL)

40 μL

100 μL

100 μL×2

40306-E

DNase I (1 U/ μL)

5 μL

12.5 μL

25 μL

40306-F

10 × DNase I Buffer

100 μL

250 μL

500 μL

 

运输与保存方法

冰袋(wet ice)运输。

本试剂盒储存在-20℃FITC-12-dUTP Labling Mix避光储存于-20℃,保质期为年。

 

注意事项

1)需自备用于洗涤细胞的PBS,用于封片的抗荧光淬灭封片液,用于固定的4%多聚甲醛。

2)如需染核,需自备DAPI(2 μg/mL)或PI(1 μg/mL)

3)如果用流式细胞仪,自备PI(1 μg/mL)DNase Free RNase A。

4)为了您的安全和健康,请穿实验服并戴一次性手套操作。

5)本产品仅作科研用途!

 

操作步骤

一、样品准备

A. 石蜡包埋组织切片

1. 室温下将石蜡组织切片放入二甲苯中浸泡5 min,重复一次,以彻底脱掉石蜡。

2. 室温下用100%乙醇浸泡切片5 min,重复一次。

3. 室温下用梯度乙醇(90、80、70%)各浸洗1次,每次3 min。

4. 用PBS轻轻润洗切片,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育20 min。

注:Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本,轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

B. 组织冰冻切片

1. 将玻片浸没在4%多聚甲醛溶液(溶于PBS)中固定,室温下孵育15 min。

2. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。

3. 将玻片浸没在PBS溶液中,室温孵育15 min。

4. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育10 min。

【注】Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本2-3次。

8. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

C. 细胞样品

【细胞爬片的准备】

Lab-Tek载玻片小室(Chamber Slides)上培养贴壁细胞。在凋亡诱导处理之后,用PBS洗2遍载玻片。

【细胞涂片的制备(以多聚赖氨酸包被的载玻片为例)】

1. 准备多聚赖氨酸包被的载玻片:吸取50–100 μL 0.01% (w/v)多聚赖氨酸水溶液,滴至每一片预清洗过的玻璃载玻片的表面。在将要用于固定细胞的区域将多聚赖氨酸溶液涂散为一薄层。待载玻片晾干之后,迅速用去离子水漂洗,然后让包被后的载玻片在空气中晾干30-60 min。包被后的载玻片能在室温储存数月。

2. 以约2×107个细胞/mL的浓度将细胞重悬于PBS中,吸取50-100 μL细胞悬液滴于多聚赖氨酸包被的载玻片上,用一片干净的载玻片轻柔的涂开细胞悬液。

按照以下步骤对细胞样品进行处理:

1. 固定细胞,将载玻片浸入装有4%新鲜配制于PBS中的多聚甲醛的染色缸中,在4℃放置25 min。

2. 洗涤载玻片,将其浸入PBS中,室温放置5 min。重复用PBS洗一次。

3. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或指甲油在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

4. 每个样本上可浸于0.2%配制于PBS中的Triton X-100溶液中,室温孵育5 min进行通透处理Proteinase K处理容易使细胞脱落)

5. 在盛有PBS溶液的敞口烧杯中浸没清洗样本2-3次。

6. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

二、DNA酶处理阳性对照的步骤(可选)

在样本通透处理后,用DNA酶I处理细胞来准备阳性对照载玻片。该流程通常会引起被处理的大多数细胞显现绿色荧光。

【注】DNA酶I处理固定的细胞会引起染色体DNA的断裂,产生许多可标记的DNA 3’-末端。

1. 按1:10的比例用去离子水稀释10×DNase I Buffer(每个样本需用200 μL 1×DNase I Buffer,即需要用20 μL 10×DNase I Buffer和180 μL去离子水混合稀释),取其中100 μL滴加到已通透的样本上,室温孵育5 min。 向剩余100 μL 1×DNase I Buffer中加1 μL DNase I (1U/μL),使其终浓度为10 U/mL。轻叩掉液体,加入100 μL含5.5-10 units/mL DNase I的缓冲液,室温孵育10 min。

2. 轻轻叩掉液体,加入100 μL 10 U/mL DNase I 的缓冲液,室温孵育10 min。

3. 轻叩载玻片,去掉多余的液体,并将载玻片在装有去离子水的染色缸中彻底洗3-4次。

【注】:阳性对照载玻片必须使用单独的染色缸,否则阳性对照载玻片上残余的DNase I 可能会在实验载玻片上引入高背景。

三、标记与检测

1. 按1:5的比例用去离子水稀释5×Equilibration Buffer。

2. 每个样本滴加100 μL 1×Equilibration Buffer使其全部覆盖待检样本区域,室温孵育10-30 min。或者将载玻片放入一个含有 1×Equilibration Buffer的缸中,保证缓冲液没过样本。在平衡细胞的同时在冰上解冻FITC-12-dUTP Labling Mix,并且依照表1,准备足够量的用于所有实验的和可选阳性对照反应的TdT孵育缓冲液。对于面积小于5 cm2的一个标准反应,其体积是50 μL,用50 μL乘以实验和阳性对照反应的数目来确定所需TdT孵育缓冲液的总体积。对于表面积更大的样本,可成比例的增大试剂体积。

1. 准备用于实验的和可选阳性对照反应的TdT孵育缓冲液

组分

体积(μL /50 μL体系)

ddH2O

34

5×Equilibration Buffer

10

FITC-12-dUTP Labling Mix

5

Recombinant TdT Enzyme

1

阴性对照体系:准备一份不含TdT酶的对照孵育缓冲液,用ddH2O替代TdT酶。

3. 在平衡后的区域周围用吸水纸洗掉100 μL 1×Equilibration Buffer中的大部分,然后在5 cm2面积的细胞上加入50 μL TdT孵育缓冲液。不要让细胞干掉。这之后的操作,载玻片要避光。

4. 把塑料盖玻片盖在细胞上以保证试剂的平均分布,在湿盒的底部放上用水浸湿的纸巾。将载玻片置于湿盒内,在37℃孵育60 min。将湿盒用铝箔纸包裹以避光。

注:塑料盖玻片在使用前可以切成两半。折起盖玻片的边缘以便于移除和操作。

5. 移除塑料盖玻片,并将切片置于PBS溶液中室温孵育5 min。

6. 轻轻去掉多余液体,换用新鲜的PBS溶液室温孵育5 min,重复一次。

7. 用滤纸轻轻擦掉样本周围及背面的PBS溶液。注意:为了降低背景,载玻片在用PBS洗一遍后,可再用含0.1% Triton X-1005 mg/mL BSA的PBS洗3次,每次5 min,这样可将游离的未反应标记物清除干净。

8. 样本在染色缸中染色,在黑暗中将载玻片浸入装有PI溶液(1 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。可选操作:样本在染色缸中染色,在黑暗中将载玻片浸入装有DAPI溶液(2 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。

9. 洗涤样本,将载玻片浸入去离子水中,室温放置5 min,重复2次,总共洗3次。

10. 叩干载玻片上多余的水并且用吸水纸擦拭细胞周边的区域。

11. 立即在荧光显微镜下分析样本,用标准的荧光过滤装置在520±20 nm的荧光下观察绿色荧光;在620 nm下观察PI的红色荧光,或在460 nm观察蓝色的DAPI。如有必要,载玻片能在4℃黑暗条件下存放过夜。PI/DAPI能将凋亡和未凋亡的细胞都染成红色/蓝色,只在凋亡的细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

四、利用流式细胞术检测悬浮细胞

1. 将3-5×106个细胞PBS在4℃离心(300×g)洗两次,然后重悬在0.5 mL PBS中

2. 固定细胞,加入5 mL 1%配制于PBS中的多聚甲醛溶液,冰上放置20 min。

3. 细胞在4℃,300×g离心10 min,去上清并且重悬于5mL PBS。重复洗一次,并用0.5 mL PBS重悬细胞。

4. 通透细胞,加入5 mL冰上预冷的70%乙醇,在-20℃孵育4小时。细胞能在70%乙醇中-20℃条件下保存一周,或者,细胞可用配制于PBS中的0.2% Triton X-100溶液通透,室温放置5 min。

5. 细胞在300×g离心10 min,并用5 mL PBS重悬。重复离心,并1 mL PBS重悬。

6. 转移2×106个细胞至一个1.5 mL的微量离心管。

7. 300×g离心10 min,去上清,并用80 μL 1×Equilibration Buffer重悬。室温孵育5 min。

8. 在平衡细胞的同时,在冰上融解FITC-12-dUTP标记混合物,并且依照表1,准备足够量的用于所有反应的TdT孵育缓冲液。对于2×106个细胞的一个标准反应,其体积是50 μL,用50μl乘上反应数目来确定所需TdT孵育缓冲液的总体积。

9. 细胞在300×g离心10 min,去上清并把沉淀重悬在50 μL TdT孵育缓冲液中,37℃孵育60 min,避光。每隔15 min用微量移液器轻轻重悬细胞。

10. 加入1mL ,20 mM EDTA终止反应,用微量移液器轻柔混匀。

11. 300×g离心10 min,去上清并把沉淀重悬在1mL配制于PBS中0.1% Triton X-100溶液,其中含5 mg/mL BSA,重复一次,总共洗2次。

12. 300×g离心10 min,去上清并把细胞沉淀重悬在0.5 mL PI溶液(1 μg/mL)中,其中包含250 μg 无DNA酶的Rnase A。

13. 在黑暗中室温孵育细胞30 min。

14. 用流式细胞仪分析细胞,测量520±20 nm的FITC-12-dUTP的绿色荧光和>620 nm的PI红色荧光。PI将凋亡和未凋亡的细胞都染成红色,只在凋亡细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

相关产品

产品名称

产品编号

规格

Annexin V-FITC/PI 细胞凋亡检测试剂盒

40302ES20

20 T

40302ES50

50 T

40302ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

TUNEL细胞凋亡检测试剂盒(FITC)

40306ES20

20 T

40306ES50

50 T

40306ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 488)

40307ES20

20 T

40307ES50

50 T

40307ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 640)

40308ES20

20 T

40308ES50

50 T

40308ES60

100 T

 

 

   HB210715

Q共染之后TUNEL 的信号就不在核内了,感觉都弥散了。TUNEL 染色就按照说明书来的,DAPI 之前孵育另外的一抗?

A可能是后期洗涤次数过多,建议减少洗涤次数,或者洗涤动作轻柔一些。

QTUNEL 可以和 DAPI 一起染色细胞吗?

A可以。

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

QTunel 细胞凋亡检测,细胞爬片好凋亡处理后需要在固定通透吗?

A需要通透,因为 TdT 酶需要经过通透的细胞才能进入细胞内,而 Annexin V  JC-1 是不能进行染色固定的。

QTunel 细胞凋亡检测时,贴壁细胞必须要先消化下来再染色吗?

A不需要,对于贴壁细胞,要先用PBS 洗 2-3 次,然后直接用多聚甲醛固定细胞, 通透处理,染色观察。

Q:固定时间可以增加吗?

A: 4℃放置25 min左右,选择4%多聚甲醛作固定液,乙醇、甲醇、酸性固定液,会导致标记效率低;固定时间不宜过长,过长导致交联程度过高,进而降低标记效率

[1] Chen J, He W, Hu X, et al. A role for ErbB signaling in the induction of reactive astrogliosis. Cell Discov. 2017;3:17044. Published 2017 Dec 5. doi:10.1038/celldisc.2017.44(IF:10.849)
[2] Pan S, Pei L, Zhang A, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials. 2020;230:119606. doi:10.1016/j.biomaterials.2019.119606(IF:10.273)
[3] Liao Y, Li H, Cao H, et al. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell. 2021;12(3):194-212. doi:10.1007/s13238-020-00750-6(IF:10.164)
[4] Li J, Kong D, Wang Q, et al. Niacin ameliorates ulcerative colitis via prostaglandin D2-mediated D prostanoid receptor 1 activation [published correction appears in EMBO Mol Med. 2020 Dec 7;12(12):e13487]. EMBO Mol Med. 2017;9(5):571-588. doi:10.15252/emmm.201606987(IF:9.249)
[5] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[6] Fu H, Zhang W, Yuan Q, et al. PAK1 Promotes the Proliferation and Inhibits Apoptosis of Human Spermatogonial Stem Cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT Pathways. Mol Ther Nucleic Acids. 2018;12:769-786. doi:10.1016/j.omtn.2018.06.006(IF:8.886)
[7] Aung LHH, Chen X, Cueva Jumbo JC, et al. Cardiomyocyte mitochondrial dynamic-related lncRNA 1 (CMDL-1) may serve as a potential therapeutic target in doxorubicin cardiotoxicity. Mol Ther Nucleic Acids. 2021;25:638-651. Published 2021 Aug 19. doi:10.1016/j.omtn.2021.08.006(IF:8.886)
[8] Qian Y, Wang Y, Jia F, et al. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials. 2019;188:96-106. doi:10.1016/j.biomaterials.2018.10.003(IF:8.806)
[9] Liu Q, Qian Y, Li P, et al. 131I-Labeled Copper Sulfide-Loaded Microspheres to Treat Hepatic Tumors via Hepatic Artery Embolization. Theranostics. 2018;8(3):785-799. Published 2018 Jan 1. doi:10.7150/thno.21491(IF:8.537)
[10] Wang H, Yuan Q, Niu M, et al. Transcriptional regulation of P63 on the apoptosis of male germ cells and three stages of spermatogenesis in mice. Cell Death Dis. 2018;9(2):76. Published 2018 Jan 23. doi:10.1038/s41419-017-0046-z(IF:8.469)
[11] Huang J, Yu W, He Q, et al. Autophagy facilitates age-related cell apoptosis-a new insight from senile cataract. Cell Death Dis. 2022;13(1):37. Published 2022 Jan 10. doi:10.1038/s41419-021-04489-8(IF:8.469)
[12] Zhou M, Liu X, Qiukai E, et al. Long non-coding RNA Xist regulates oocyte loss via suppressing miR-23b-3p/miR-29a-3p maturation and upregulating STX17 in perinatal mouse ovaries. Cell Death Dis. 2021;12(6):540. Published 2021 May 25. doi:10.1038/s41419-021-03831-4(IF:8.469)
[13] Wang YJ, Liu MG, Wang JH, et al. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep. 2020;33(6):108369. doi:10.1016/j.celrep.2020.108369(IF:8.109)
[14] Wan Y, Feng B, You Y, et al. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep. 2020;33(5):108346. doi:10.1016/j.celrep.2020.108346(IF:8.109)
[15] Yang X, Zhao X, Zhu Y, et al. FKBP3 Induces Human Immunodeficiency Virus Type 1 Latency by Recruiting Histone Deacetylase 1/2 to the Viral Long Terminal Repeat. mBio. 2021;12(4):e0079521. doi:10.1128/mBio.00795-21(IF:7.867)
[16] Sun Z, Huang J, Su L, et al. Arf6-mediated macropinocytosis-enhanced suicide gene therapy of C16TAB-condensed Tat/pDNA nanoparticles in ovarian cancer. Nanoscale. 2021;13(34):14538-14551. Published 2021 Sep 2. doi:10.1039/d1nr03974a(IF:7.790)
[17] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[18] Tang K, Qin W, Wei R, et al. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence. Pharmacol Res. 2022;179:106123. doi:10.1016/j.phrs.2022.106123(IF:7.658)
[19] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[20] Liu B, Qiao G, Han Y, et al. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater. 2020;117:361-373. doi:10.1016/j.actbio.2020.09.040(IF:7.242)
[21] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[22] Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ. Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca2+/calmodulin-dependent protein kinase II. Redox Biol. 2018;19:250-262. doi:10.1016/j.redox.2018.08.008(IF:7.126)
[23] Zhang C, Chen H, He Q, et al. Fibrinogen/AKT/Microfilament Axis Promotes Colitis by Enhancing Vascular Permeability. Cell Mol Gastroenterol Hepatol. 2021;11(3):683-696. doi:10.1016/j.jcmgh.2020.10.007(IF:7.076)
[24] Zeng M, He Y, Gao X, et al. Characteristics and functions of glyceraldehyde 3-phosphate dehydrogenase S-nitrosylation during controlled aging of elm and Arabidopsis seeds. J Exp Bot. 2021;72(20):7020-7034. doi:10.1093/jxb/erab322(IF:6.992)
[25] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[26] Chen H, Guan B, Chen X, et al. Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO-MMP-9 Pathway. Transl Stroke Res. 2018;9(5):515-529. doi:10.1007/s12975-017-0598-3(IF:6.829)
[27] Liu Y, Yang Y, Suo Y, et al. Inducible caspase-9 suicide gene under control of endogenous oct4 to safeguard mouse and human pluripotent stem cell therapy. Mol Ther Methods Clin Dev. 2022;24:332-341. Published 2022 Feb 1. doi:10.1016/j.omtm.2022.01.014(IF:6.698)
[28] Zhang P, Han X, Zhang X, Zhu X. Lactobacillus acidophilus ATCC 4356 Alleviates Renal Ischemia-Reperfusion Injury Through Antioxidant Stress and Anti-inflammatory Responses and Improves Intestinal Microbial Distribution. Front Nutr. 2021;8:667695. Published 2021 May 11. doi:10.3389/fnut.2021.667695(IF:6.576)
[29] Hu Z, Zhang H, Yi B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020;11(1):73. Published 2020 Jan 29. doi:10.1038/s41419-020-2256-z(IF:6.304)
[30] Liu J, Liu B, Yuan P, et al. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol Environ Saf. 2021;214:112005. doi:10.1016/j.ecoenv.2021.112005(IF:6.291)
[31] Liu H, Zhou W, Guo L, et al. Quercetin protects against palmitate-induced pancreatic β-cell apoptosis by restoring lysosomal function and autophagic flux [published online ahead of print, 2022 May 25]. J Nutr Biochem. 2022;107:109060. doi:10.1016/j.jnutbio.2022.109060(IF:6.048)
[32] Xie L, Huang W, Fang Z, et al. CircERCC2 ameliorated intervertebral disc degeneration by regulating mitophagy and apoptosis through miR-182-5p/SIRT1 axis. Cell Death Dis. 2019;10(10):751. Published 2019 Oct 3. doi:10.1038/s41419-019-1978-2(IF:5.959)
[33] Zhang C, He A, Liu S, et al. Inhibition of HtrA2 alleviated dextran sulfate sodium (DSS)-induced colitis by preventing necroptosis of intestinal epithelial cells. Cell Death Dis. 2019;10(5):344. Published 2019 Apr 24. doi:10.1038/s41419-019-1580-7(IF:5.959)
[34] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[35] Cen K, Chen M, He M, et al. Sporoderm-Broken Spores of Ganoderma lucidum Sensitizes Ovarian Cancer to Cisplatin by ROS/ERK Signaling and Attenuates Chemotherapy-Related Toxicity. Front Pharmacol. 2022;13:826716. Published 2022 Feb 21. doi:10.3389/fphar.2022.826716(IF:5.811)
[36] Mao Y, Tu R, Huang Y, et al. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development. 2019;146(13):dev174615. Published 2019 Jun 28. doi:10.1242/dev.174615(IF:5.763)
[37] Zhou F, Yuan Q, Zhang W, et al. MiR-663a Stimulates Proliferation and Suppresses Early Apoptosis of Human Spermatogonial Stem Cells by Targeting NFIX and Regulating Cell Cycle. Mol Ther Nucleic Acids. 2018;12:319-336. doi:10.1016/j.omtn.2018.05.015(IF:5.660)
[38] Yang C, Yao C, Tian R, et al. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling. Mol Ther Nucleic Acids. 2019;14:1-19. doi:10.1016/j.omtn.2018.10.012(IF:5.660)
[39] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[40] Xing J, Wang M, Hong J, et al. TRPM7 channel inhibition exacerbates pulmonary arterial hypertension through MEK/ERK pathway. Aging (Albany NY). 2019;11(12):4050-4065. doi:10.18632/aging.102036(IF:5.515)
[41] Liu G, Liu Q, Shen Y, et al. Early treatment with Resolvin E1 facilitates myocardial recovery from ischaemia in mice. Br J Pharmacol. 2018;175(8):1205-1216. doi:10.1111/bph.14041(IF:5.491)
[42] Wang Z, Wang Q, Xu G, et al. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol. 2020;17(11):1576-1589. doi:10.1080/15476286.2019.1709296(IF:5.350)
[43] Yang K, Wei M, Yang Z, et al. Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity. Cell Oncol (Dordr). 2020;43(6):1175-1190. doi:10.1007/s13402-020-00550-4(IF:5.304)
[44] Zhang L, Yao X, Ma M, et al. Protective Effect of l-Theanine against DSS-Induced Colitis by Regulating the Lipid Metabolism and Reducing Inflammation via the NF-κB Signaling Pathway. J Agric Food Chem. 2021;69(47):14192-14203. doi:10.1021/acs.jafc.1c05839(IF:5.279)
[45] Zhang C, Luo Y, He Q, Liu S, He A, Yan J. A pan-RAF inhibitor LY3009120 inhibits necroptosis by preventing phosphorylation of RIPK1 and alleviates dextran sulfate sodium-induced colitis. Clin Sci (Lond). 2019;133(8):919-932. Published 2019 Apr 16. doi:10.1042/CS20181081(IF:5.237)
[46] Ding X, Wang S, Wang Y, et al. Neonatal Heart Responds to Pressure Overload With Differential Alterations in Various Cardiomyocyte Maturation Programs That Accommodate Simultaneous Hypertrophy and Hyperplasia. Front Cell Dev Biol. 2020;8:596960. Published 2020 Nov 19. doi:10.3389/fcell.2020.596960(IF:5.186)
[47] Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. Exosomal MicroRNA-181a Derived From Mesenchymal Stem Cells Improves Gut Microbiota Composition, Barrier Function, and Inflammatory Status in an Experimental Colitis Model. Front Med (Lausanne). 2021;8:660614. Published 2021 Jun 24. doi:10.3389/fmed.2021.660614(IF:5.093)
[48] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[49] Li Y, Wu Y, Jiang K, et al. Mangiferin Prevents TBHP-Induced Apoptosis and ECM Degradation in Mouse Osteoarthritic Chondrocytes via Restoring Autophagy and Ameliorates Murine Osteoarthritis. Oxid Med Cell Longev. 2019;2019:8783197. Published 2019 Oct 15. doi:10.1155/2019/8783197(IF:4.868)
[50] Fan J, Chen M, Wang X, et al. Targeting Smox Is Neuroprotective and Ameliorates Brain Inflammation in Cerebral Ischemia/Reperfusion Rats. Toxicol Sci. 2019;168(2):381-393. doi:10.1093/toxsci/kfy300(IF:4.849)
[51] Wang Y, Duo D, Yan Y, He R, Wu X. Magnesium lithospermate B ameliorates hypobaric hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and its potential targets. Biomed Pharmacother. 2020;130:110560. doi:10.1016/j.biopha.2020.110560(IF:4.545)
[52] Huang R, Zhu Y, Lin L, Song S, Cheng L, Zhu R. Solid Lipid Nanoparticles Enhanced the Neuroprotective Role of Curcumin against Epilepsy through Activation of Bcl-2 Family and P38 MAPK Pathways. ACS Chem Neurosci. 2020;11(13):1985-1995. doi:10.1021/acschemneuro.0c00242(IF:4.486)
[53] Long J, Liu L, Zhou X, Lu X, Qin L. HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. J Oncol. 2022;2022:7130634. Published 2022 May 11. doi:10.1155/2022/7130634(IF:4.375)
[54] Li S, Liu M, Ma H, et al. Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res. 2021;14(1):17. Published 2021 Jan 21. doi:10.1186/s13048-020-00763-z(IF:4.234)
[55] Wen C, Li F, Guo Q, et al. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol. 2020;11:56. Published 2020 Jun 3. doi:10.1186/s40104-020-00463-0(IF:4.167)
[56] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[57] Li Z, Zhu J, Wang Y, et al. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy. Asian J Pharm Sci. 2020;15(4):482-491. doi:10.1016/j.ajps.2019.05.002(IF:4.016)
[58] Tang B, Song M, Xie X, et al. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Secreted by BMSCs Regulates Activated Astrocytes by Inhibiting NF-κB Signaling Pathway to Ameliorate Blood Brain Barrier Damage After Intracerebral Hemorrhage. Neurochem Res. 2021;46(9):2387-2402. doi:10.1007/s11064-021-03375-1(IF:3.996)
[59] Li Y, Han W, Wu Y, et al. Stabilization of Hypoxia Inducible Factor-1α by Dimethyloxalylglycine Promotes Recovery from Acute Spinal Cord Injury by Inhibiting Neural Apoptosis and Enhancing Axon Regeneration. J Neurotrauma. 2019;36(24):3394-3409. doi:10.1089/neu.2018.6364(IF:3.754)
[60] Zhou H, Li L, Sun H, et al. Remote Ischemic Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury after Hemorrhagic Shock by Increasing Autophagy. Int J Med Sci. 2021;18(4):873-882. Published 2021 Jan 1. doi:10.7150/ijms.51268(IF:3.738)
[61] Li S, Zeng M, Yang L, et al. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression. Int J Biochem Cell Biol. 2020;127:105826. doi:10.1016/j.biocel.2020.105826(IF:3.673)
[62] Ma X, Zhou Y, Qiao B, et al. Androgen aggravates liver fibrosis by activation of NLRP3 inflammasome in CCl4-induced liver injury mouse model. Am J Physiol Endocrinol Metab. 2020;318(5):E817-E829. doi:10.1152/ajpendo.00427.2019(IF:3.469)
[63] Zhao J, Zhao X, Tian J, et al. Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO-1 expression and activating ERK1/2 pathway. Life Sci. 2020;241:117160. doi:10.1016/j.lfs.2019.117160(IF:3.448)
[64] Zhang Y, Zhu Z, Huang S, et al. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int. 2019;19:198. Published 2019 Jul 29. doi:10.1186/s12935-019-0909-8(IF:3.439)
[65] Wang H, He F, Liang B, et al. p53-Dependent LincRNA-p21 Protects Against Proliferation and Anti-apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. J Cardiovasc Transl Res. 2021;14(3):426-440. doi:10.1007/s12265-020-10074-9(IF:3.312)
[66] Li Y, Zhou T, Su YF, et al. Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats. Asian J Androl. 2020;22(5):500-506. doi:10.4103/aja.aja_109_19(IF:3.285)
[67] Li X, Zhan J, Hou Y, et al. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. Am J Transl Res. 2019;11(10):6544-6552. Published 2019 Oct 15. (IF:3.266)
[68] Zeng L, Gu N, Chen J, Jin G, Zheng Y. IRX1 hypermethylation promotes heart failure by inhibiting CXCL14 expression. Cell Cycle. 2019;18(23):3251-3262. doi:10.1080/15384101.2019.1673099(IF:3.259)
[69] Li P, Hao L, Guo YY, et al. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons. Life Sci. 2018;202:70-77. doi:10.1016/j.lfs.2018.01.011(IF:3.234)
[70] Hu F, Guo L, Yu J, et al. Using Patient-Derived Xenografts to Explore the Efficacy of Treating Head-and-Neck Squamous Cell Carcinoma With Anlotinib. Pathol Oncol Res. 2021;27:1610008. Published 2021 Dec 9. doi:10.3389/pore.2021.1610008(IF:3.201)
[71] Song XY, Wang YY, Chu SF, et al. A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats. Acta Pharmacol Sin. 2016;37(4):444-452. doi:10.1038/aps.2015.132(IF:3.166)
[72] Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound‑targeted microbubble destruction‑mediated Galectin‑7‑siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med. 2021;47(2):677-687. doi:10.3892/ijmm.2020.4830(IF:3.098)
[73] Cai H, Han B, Hu Y, et al. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med. 2020;45(3):715-730. doi:10.3892/ijmm.2020.4453(IF:3.098)
[74] Zeng J, Zhao H, Chen B. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Exp Eye Res. 2019;189:107830. doi:10.1016/j.exer.2019.107830(IF:2.998)
[75] Li Y, Huang D, Zheng L, Cao H, Fan Z. Effect of microRNA-141 on the development of diabetic nephropathy through regulating AKT/AMPK signaling pathway by targeting insulin receptor substrate 2 [published online ahead of print, 2018 Nov 14]. J Cell Biochem. 2018;10.1002/jcb.28078. doi:10.1002/jcb.28078(IF:2.959)
[76] Lou Y, Huang Z, Wu H, Zhou Y. Tranilast attenuates lipopolysaccharide‑induced lung injury via the CXCR4/JAK2/STAT3 signaling pathway. Mol Med Rep. 2022;26(1):220. doi:10.3892/mmr.2022.12736(IF:2.952)
[77] Fan Y, Wu Y. Tetramethylpyrazine alleviates neural apoptosis in injured spinal cord via the downregulation of miR-214-3p. Biomed Pharmacother. 2017;94:827-833. doi:10.1016/j.biopha.2017.07.162(IF:2.759)
[78] Guo F, Xia T, Zhang Y, et al. Menstrual blood derived mesenchymal stem cells combined with Bushen Tiaochong recipe improved chemotherapy-induced premature ovarian failure in mice by inhibiting GADD45b expression in the cell cycle pathway. Reprod Biol Endocrinol. 2019;17(1):56. Published 2019 Jul 16. doi:10.1186/s12958-019-0499-2(IF:2.589)
[79] Weihong C, Bin C, Jianfeng Y. Transmembrane protein 126B protects against high fat diet (HFD)-induced renal injury by suppressing dyslipidemia via inhibition of ROS. Biochem Biophys Res Commun. 2019;509(1):40-47. doi:10.1016/j.bbrc.2018.12.003(IF:2.559)
[80] Wang Y, Wang Q, Zhang L, et al. Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun. 2017;490(2):231-238. doi:10.1016/j.bbrc.2017.06.027(IF:2.466)
[81] Zhou T, Liang Y, Jiang L, Yu T, Zeng C, Tao E. Mild hypothermia protects against oxygen glucose deprivation/reoxygenation-induced apoptosis via the Wnt/β-catenin signaling pathway in hippocampal neurons. Biochem Biophys Res Commun. 2017;486(4):1005-1013. doi:10.1016/j.bbrc.2017.03.153(IF:2.466)
[82] Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2 [published online ahead of print, 2022 Mar 1]. Biotechnol Appl Biochem. 2022;10.1002/bab.2332. doi:10.1002/bab.2332(IF:2.431)
[83] Zhang Y, Song Y, Li C, et al. Brother of regulator of imprinted sites inhibits cisplatin-induced DNA damage in non-small cell lung cancer. Oncol Lett. 2020;20(5):251. doi:10.3892/ol.2020.12114(IF:2.311)
[84] Zhang D, Zhou XH, Zhang J, et al. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 2015;468(4):561-567. doi:10.1016/j.bbrc.2015.10.129(IF:2.297)
[85] Zhou Q, Song C, Liu X, Qin H, Miao L, Zhang X. Peptidylarginine deiminase 4 overexpression resensitizes MCF-7/ADR breast cancer cells to adriamycin via GSK3β/p53 activation. Cancer Manag Res. 2019;11:625-636. Published 2019 Jan 10. doi:10.2147/CMAR.S191353(IF:2.243)
[86] Su Y, Tian H, Wei L, Fu G, Sun T. Integrin β3 inhibits hypoxia-induced apoptosis in cardiomyocytes. Acta Biochim Biophys Sin (Shanghai). 2018;50(7):658-665. doi:10.1093/abbs/gmy056(IF:2.224)
[87] Zhang W, Yin L, Tao X, et al. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environ Toxicol Pharmacol. 2016;45:193-201. doi:10.1016/j.etap.2016.06.002(IF:2.187)
[88] Li JH, Wei TT, Guo L, et al. Curcumin protects thymus against D-galactose-induced senescence in mice. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(2):411-420. doi:10.1007/s00210-020-01945-8(IF:2.050)
[89] Shang D, Wu Y, Ding Y, et al. Identification of a pyridine derivative inducing senescence in ovarian cancer cell lines via P21 activation. Clin Exp Pharmacol Physiol. 2018;45(5):452-460. doi:10.1111/1440-1681.12891(IF:2.010)
[90] Li P, Liu Q, Wang X, Huang G, Song S. 18F-Deoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography (PET/CT) Monitoring of Dynamic Growth Characteristics of Walker-256 Tumor Models in 3 Different Locations in Rats. Med Sci Monit. 2019;25:558-564. Published 2019 Jan 19. doi:10.12659/MSM.909286(IF:1.980)
[91] Yang R, Cai X, Li J, Liu F, Sun T. Protective Effects of MiR-129-5p on Acute Spinal Cord Injury Rats. Med Sci Monit. 2019;25:8281-8288. Published 2019 Nov 4. doi:10.12659/MSM.916731(IF:1.980)
[92] Huang L, Jin K, Lan H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol Lett. 2019;17(4):3842-3850. doi:10.3892/ol.2019.10052(IF:1.871)
[93] Liao X, Zhou S, Zong J, Wang Z. Sevoflurane exerts protective effects on liver ischemia/reperfusion injury by regulating NFKB3 expression via miR-9-5p. Exp Ther Med. 2019;17(4):2632-2640. doi:10.3892/etm.2019.7272(IF:1.448)
[94] Chen H, Lu Q, Chen C, et al. β-catenin regulates effects of miR-24 on the viability and autophagy of glioma cells. Exp Ther Med. 2019;18(2):1285-1290. doi:10.3892/etm.2019.7680(IF:1.448)
[95] Liu ZC, Meng LQ, Song JH, Gao J. Dynamic protein expression of NF-κB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med. 2018;16(5):3903-3908. doi:10.3892/etm.2018.6715(IF:1.410)
[96] Ma L, Cao Y, Hu J, Chu M. High expression of the CKIP-1 gene might promote apoptosis through downregulation of the Ras/ERK signalling pathway in the intestinal type of gastric cancer. J Int Med Res. 2020;48(3):300060520909025. doi:10.1177/0300060520909025(IF:1.287)
[97] Zhou PH, Shi L, Qiu B. Protective effect of controlled release of cytokine response modifier A from chitosan microspheres on rat chondrocytes from interleukin-1β induced inflammation and apoptosis. Exp Ther Med. 2017;14(4):3170-3178. doi:10.3892/etm.2017.4884(IF:1.261)
[98] Zhang C , Wang K , Li C , et al. Stress-induced cytotoxicity of chiral Ag nanoclusters. J Mater Chem B. 2014;2(40):6931-6938. doi:10.1039/c4tb01067a(IF:0.000)

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导

产品说明书

FAQ

COA

已发表文献

产品描述

地塞米松(Dexamethasone),一种抗炎糖皮质素,对细胞存活、细胞信号的转导和基因表达具有一系列的影响,如:可抑制一氧化氮合酶的诱导作用(IC50=5 nM);可通过刺激Na+-K+泵增强大动脉平滑肌细胞阳离子的运输作用;可降低周期蛋白ACdk2的活性;抑制骨细胞G1/S的过渡;抑制Rb蛋白的磷酸化作用;诱导人胸腺细胞凋亡发生。

地塞米松(10 mM),货号:40323ES03,为溶于DMSO的储存液,浓度为10 mM

地塞米松,货号:40323ES2540323ES60,皆为粉末形式供应,需要先配置成10 mM或者更高浓度的DMSO储存液,分装后-20℃冻存。

一般而言,500-1000 nM 的地塞米松于37℃作用6 h足可诱导凋亡发生。

 

产品性质

中文别名(Chinese Synonym

21α-乙酰氧基-9α--11β,17α-二羟基-16α-甲基孕甾-1,4-二烯-3,20-二酮 9α--16α-甲基氢化泼尼松 9--11,17,21-三羟基-16-甲基(11b,16a)-孕甾-1,4-二烯-3,20-二酮 德沙美松

英文别名(English Synonym

9α-Fluoro-16α-methylprednisolone,PrednisoloneF,(11β,16α)-9-Fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3,20-dione,9α-Fluoro-16α-methyl-11β,17α,21-trihydroxy-1,4-pregnadiene-3,20-dione

CAS号(CAS NO.

50-02-2

分子式(Formula

C22H29FO5

分子量(Molecular Weight

392.46

结构式(Structure

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导 

 

运输和保存方法

冰袋运输。粉末4℃干燥保存,5年稳定。储存液-20℃干燥保存,一年稳定。

 

注意事项

1为了您的安全和健康,请穿实验服并戴一次性手套操作。

2本产品仅作科研用途!

HB221011

Q:液体的地塞米松配置成工作液时比较难溶解,有什么方法可以解决?

A:可以 37 度加热并摇晃助溶。

Q:工作液是否可以配置好后放置在 4 度储存?

A:工作液需要现用现配。

[1] Pu J, Zhou X, Liu J, Hou P, Ji M. Therapeutic potential and deleterious effect of glucocorticoids on azoxymethane/dextran sulfate sodium-induced colorectal cancer in mice. Am J Cancer Res. 2021;11(10):4866-4883. Published 2021 Oct 15. (IF:6.166)

产品描述

地塞米松(Dexamethasone),一种抗炎糖皮质素,对细胞存活、细胞信号的转导和基因表达具有一系列的影响,如:可抑制一氧化氮合酶的诱导作用(IC50=5 nM);可通过刺激Na+-K+泵增强大动脉平滑肌细胞阳离子的运输作用;可降低周期蛋白ACdk2的活性;抑制骨细胞G1/S的过渡;抑制Rb蛋白的磷酸化作用;诱导人胸腺细胞凋亡发生。

地塞米松(10 mM),货号:40323ES03,为溶于DMSO的储存液,浓度为10 mM

地塞米松,货号:40323ES2540323ES60,皆为粉末形式供应,需要先配置成10 mM或者更高浓度的DMSO储存液,分装后-20℃冻存。

一般而言,500-1000 nM 的地塞米松于37℃作用6 h足可诱导凋亡发生。

 

产品性质

中文别名(Chinese Synonym

21α-乙酰氧基-9α--11β,17α-二羟基-16α-甲基孕甾-1,4-二烯-3,20-二酮 9α--16α-甲基氢化泼尼松 9--11,17,21-三羟基-16-甲基(11b,16a)-孕甾-1,4-二烯-3,20-二酮 德沙美松

英文别名(English Synonym

9α-Fluoro-16α-methylprednisolone,PrednisoloneF,(11β,16α)-9-Fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3,20-dione,9α-Fluoro-16α-methyl-11β,17α,21-trihydroxy-1,4-pregnadiene-3,20-dione

CAS号(CAS NO.

50-02-2

分子式(Formula

C22H29FO5

分子量(Molecular Weight

392.46

结构式(Structure

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导 

 

运输和保存方法

冰袋运输。粉末4℃干燥保存,5年稳定。储存液-20℃干燥保存,一年稳定。

 

注意事项

1为了您的安全和健康,请穿实验服并戴一次性手套操作。

2本产品仅作科研用途!

HB221011

Q:液体的地塞米松配置成工作液时比较难溶解,有什么方法可以解决?

A:可以 37 度加热并摇晃助溶。

Q:工作液是否可以配置好后放置在 4 度储存?

A:工作液需要现用现配。

[1] Pu J, Zhou X, Liu J, Hou P, Ji M. Therapeutic potential and deleterious effect of glucocorticoids on azoxymethane/dextran sulfate sodium-induced colorectal cancer in mice. Am J Cancer Res. 2021;11(10):4866-4883. Published 2021 Oct 15. (IF:6.166)

Imgenex品牌代理

Imgenex

简要描述:

Imgenex提供抗体、ELISA检测试剂盒等免疫学产品、表达系统、RNAi等分子生物学研究产品以及蛋白转染试剂、细胞凋亡、ChIP等研究工具。

Imgenex提供抗体、ELISA检测试剂盒等免疫学产品、表达系统、RNAi等分子生物学研究产品以及蛋白转染试剂、细胞凋亡、ChIP等研究工具。


产品列表:


No.

品牌

货号

名称

规格

1

Imgenex

SP4385P

MC1 Receptor Antibody

0.05mg

2

Imgenex

PA184X

Defensin beta 3 Protein

0.02mg

3

Imgenex

NSB998

PKA 2 beta [phospho Ser114] Antibody

0.1ml

4

Imgenex

NSB992

cAMP Protein Kinase Catalytic subunit beta [phospho Ser338] Antibody

0.05ml

5

Imgenex

NSB955

PKC beta [phospho Thr500] Antibody

0.1ml

6

Imgenex

NSB948

GATA4 [phospho Ser105] Antibody

0.1ml

7

Imgenex

NSB944

NFAT1 [phospho Ser54] Antibody

0.1ml

8

Imgenex

NSB942

PAK1/2/3 [phospho Thr423] Antibody

0.1ml

9

Imgenex

NSB940

PAK1/2/3 [phospho Ser141] Antibody

0.1ml

10

Imgenex

NSB928

RSK1 [phospho Ser380] Antibody

0.1ml

11

Imgenex

NSB918

S6K [phospho Thr229] Antibody

0.1ml

12

Imgenex

NSB912

Src [phospho Tyr522] Antibody

0.1ml

13

Imgenex

NSB910

Hck [phospho Tyr207/Ser211] Antibody

0.1ml

14

Imgenex

NSB909

DAB1 [phospho Ser491] Antibody

0.1ml

15

Imgenex

NSB882

Met (c-Met) [phospho Tyr1003] Antibody

0.1ml