AssayPro品牌代理

AssayPro

简要描述:

美国AssayPro致力于为学术研究和制药、生物技术产业的研究人员,提供高质量的成套免疫吸附试剂。

美国AssayPro致力于为学术研究和制药、生物技术产业的研究人员,提供高质量的成套免疫吸附试剂。AssayPro 产品线包括 AssayMax 酶联免疫吸附试剂盒、AssaySense 活性测定盒、抗体和其他相关试剂。AssayPro 提供给客户的试剂不仅具有价格上的竞争力,而且还可以定制产品,以满足客户的特定需求。 AssayPro 时刻保持着高度地积极性,经验丰富的研发团队为您的成功实验时刻准备着。


Assaypro is dedicated to providing high quality immunological assay kits and reagents to the researchers in both academia and pharmaceutical/biotech industry. Our product lines include AssayLiteTM Rapid Series, AssayLiteTM Extreme Series, AssayMax ELISA kits, AssaySense Chromogenic Activity kits, antibodies, and other related reagents.

品牌

名称

1

60272-05011

150 ug

assaypro

Human Apolipoprotein C-III (Apo C3) Monoclonal Antibody (Biotin Conjugate)

3

60231-05011

150 ug

assaypro

Human Complement C3 Monoclonal Antibody (RPE Conjugate)

5

60231-05021

150 ug

assaypro

Human Complement C3 Monoclonal Antibody (FITC Conjugate)

7

60231-05071

150 ug

assaypro

Human Complement C3 Monoclonal Antibody(APC Conjugate)

9

61180-05011

150 ug

assaypro

Human Complement C5 Monoclonal Antibody

11

61180-05051

150 ug

assaypro

Human Complement C5 Monoclonal Antibody (RPE Conjugate)

13

61181-05061

150 ug

assaypro

Human Complement C5 Monoclonal Antibody (Biotin Conjugate)

15

61181-05021

150 ug

POLYPEI转染试剂说明书

POLYPEI转染试剂说明书

产品详情

货号

规格

价格

78EF10004-1ml

1ml

950.00

78EF10004-5ml

5ml

3200.00 

                                                                                 

产品描述

细胞转染是指将外源分子导入真核细胞内以改变其基因型或表型的一种技术。随着分子生物学和细胞生物学研究的不断发展,转染已经成为研究和控制基因功能的常规手段,广泛应用于基因功能研究、调控基因表达、突变分析和蛋白质生产等领域。转染大致可分为物理介导、化学介导和生物介导三类途径。其中化学介导方法因其兼具高效低毒、方便快捷等优点,应用广泛。化学介导方法包括经典的磷酸钙共沉淀法、脂质体转染方法以及多种阳离子物质介导的转染方法。

理想的细胞转染方法应该具有转染效率高、细胞毒性小等优点。已有众多文献报道,脂质体本身会参与细胞生理活动,影响基因表达,对研究数据产生一定程度的干扰。同时,脂质体会对目的细胞造成细胞毒性,这种毒性是由其脂质特性决定的。市面上多种商业化的脂质体转染试剂要求细胞铺板密度较高,以90%-95%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响。但是,如果研究的基因要求比较长的表达时间,例如细胞周期相关基因,或者细胞表面蛋白,又或者转染后续需要进行继续培养和功能研究,则不适合用脂质体核酸转染试剂。目前众多的研究者和生物公司将新一代转染试剂的开发聚焦在非脂质体的聚合物上,以寻找更高效低毒,同时对研究影响较小的转染试剂。

PolyShooterTM Transfection Reagent是一种基于阳离子高分子聚合物的新型转染试剂,适用于DNA、RNA的转染。其原理为带正电的高分子聚合物与核酸带负电的磷酸基团形成带正电的复合物后,与细胞表面带负电的蛋白多糖相互作用,并通过内吞作用进入细胞,随后在胞质中释放,实现外源核酸的细胞转染。

PolyShooterTM Transfection Reagent对多种常见细胞具有高水平转染效率,具有高效低毒、操作简单、重复性好等优点。其配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。同时,转染后不需要除去PolyShooterTM Transfection Reagent-核酸复合物或更换新鲜培养基,也可根据具体情况优化转染体系。

产品特点

1.转染效率好——针对广泛类型的细胞,均表现出的转染效率和高重组蛋白表达水平

2.细胞毒性低——作用温和,能较好地实现高转染效率与低细胞毒性之间的平衡

3.操作简单——在血清存在时亦具有可靠的转染效率,转染后无需去除复合物或更换新鲜培养基

4.高性价比——经济的价格,同时实现高效的转染效果

PolyShooterTM Transfection Reagent采用阳离子高分子聚合物为主要成分,适用于DNA、RNA的转染。

使用方法

使用方法

(以24孔板为例,其他培养板加样体积参考表一:转染量度标准)

1: 准备待转染细胞

贴壁细胞:转染前一天,将胰酶消化后的细胞按照每孔0.5-1.5×105个细胞的量进行铺板,使其在转染时密度为50%左右。

悬浮细胞:转染当天,配制转染试剂-核酸复合物之前,在24孔板中进行细胞铺板,每500 µL生长培养基中加入1-3×105个细胞。

Ø  细胞状态会极大影响转染效率,待转染细胞应处于良好生长状态,建议使用生长处于指数期、存活率大于90% 的细胞进行转染。

2: 准备PolyShooterTM转染试剂-核酸复合物

1)取1 μg质粒加入到1.5 mL离心管中,加入2.5 μL* PolyShooterTM 转染试剂与质粒混合,室温孵育3分钟。

Ø   * 转染试剂使用量受细胞类型及其他实验条件影响,通常情况下,DNA(μg)和 PolyShooterTM转染试剂(μL)的用量比例为1:2.5。建议初次使用时,可在1:2-1:5的范围内调整以优化转染效果。

2)往上述混合物中加入100 μL无血清基础培养基(与培养体系一致,且无血清无双抗),轻轻混匀,在室温下静置30分钟,形成PolyShooterTM转染试剂-核酸复合物。

Ø  PolyShooterTM转染试剂-核酸复合物在室温下4个小时内保持稳定。

3: 细胞转染

给细胞更换新鲜的预热的Complete medium 500 μL/孔,将上述100 µL PolyShooterTM 转染试剂-核酸复合物加入每孔细胞,轻轻摇动培养板混匀。

Ø  对于悬浮细胞系:转染5小时后,可选择加入PMA和/或PHA以提高CVM启动子的活性并促进基因表达。对于Jurkat细胞,PHA和PMA的终浓度分别为1 µg/mL和50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

4. 分析转染细胞

转染细胞培养24-48小时后,可根据实际情况用荧光检测法、Western Blot、RT-PCR、ELISA、流式细胞术、报告基因等检测转染效果,或加入筛选药物进行稳定细胞株的筛选。

表一:转染量度标准

细胞培养装置

生长培养基   体积

mL)

质粒

μg)

PolyShooterTM转染试剂

μL)

无血清基础培养基体积(μL)

96孔板

0.1

0.2

0.5

20

24孔板

0.5

1

2.5

100

12孔板

1

2

5

200

6孔板

2

2-4

5-10

400

60 mm培养皿

4

3-5

7.5-12.5

800

100 mm培养皿

10

5-10

12.5-25

2000

125 mL摇瓶

30-35

30-35

75-87.5

6000

500 mL摇瓶

120-140

120-140

300-350

24000

1000 mL摇瓶

240-280

240-280

600-700

48000

实验案例分析

09/实验案例分析

1: 转染前一天,将图2所示9种状态良好的细胞接种于24孔板,使其在转染时密度约为50%。

2: 按照每孔计量,取1μg GFP质粒加入到1.5 mL离心管中,加入2.5 μL PolyShooterTM Transfection Reagent与质粒混合,室温孵育3 min后,往混合物

加入100 μL无血清基础DMEM培养基,轻轻混匀,在室温下静置30 min,形成PolyShooterTM转染试剂-核酸复合物。

3: 给细胞更换新鲜的预热的Complete medium  500 μL/孔,将上述100 µL PolyShooterTM 转染试剂-核酸复合物加入每孔细胞,轻轻摇动培养板混匀。

4:转染细胞培养48小时后,用荧光显微镜检测GFP绿色荧光蛋白表达情况,并拍照记录,实验结果如图2所示。

2: 转染细胞培养48小时后,用荧光显微镜检测GFP绿色荧光蛋白表达情况

注意事项

1. 核酸质量:想要获得最高的转染效率和较低的细胞毒性,应选用高纯度、无菌、无污染、无内毒素的优质核酸。质粒中的内毒素是转染的大敌,内毒素会导致转染效率显著下降,特别是对内毒素敏感的细胞,例如原代细胞、悬浮细胞、造血细胞等。推荐使用无内毒素质粒抽提试剂盒进行质粒提取,保证质粒A260/A280比值为1.8-2.0。同时,需合理计算质粒用量,转染过量的质粒可能会导致细胞毒性甚至死亡;

2. 细胞质量:细胞状态会极大影响转染效率,建议使用生长处于指数期、存活率大于90%的细胞进行转染;

3. 细胞密度:建议细胞传代后12-24 h内、细胞密度约为50%时进行转染。不同的细胞转染实验,对细胞密度的要求不尽相同。在进行不同核酸或不同细胞系的转染时,需要根据说明书再次优化实验条件。此外,在实验过程中保证相同的接种条件,确保实验数据的可重复性;

4. 质粒与转染试剂使用比例:对于大多数细胞系,转染复合物中DNA (μg)与PolyShooterTM Transfection Reagent (μL) 的比例在1:2至1:5之间,推荐比例为1:2.5。想要获得好的转染结果,需要对这一比例进行优化,根据所转染细胞及质粒选择适合的转染比例;

5. PolyShooterTM Transfection Reagent可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清基础培养基稀释DNA和转染试剂,因为血清会影响复合物的形成;

6. 由于一些特殊培养基中的某些成分可能会抑制阳离子聚合物介导的转染,因此有必要检测特殊培养基与PolyShooterTM Transfection Reagent的相容性;

7. 为了您的健康安全,请规范操作,穿戴实验服与手套开展实验;

8. 本产品仅供科研使用,请勿用于临床诊断及治疗。

运输及保存方法

冰袋(wet ice)运输。4℃保存,有效期6个月。-30℃至-10℃保存,有效期12个月,避免反复冻融。

Complement Technology品牌代理

Complement Technology

简要描述:

CompTech致力于为生物医学研究提供高质量的补体试剂。 CompTech的研发人员在补充试剂领域拥有80多年的丰富经验。是销售补充试剂的原始制造商。

CompTech致力于为生物医学研究提供高质量的补体试剂。 CompTech的研发人员在补充试剂领域拥有80多年的丰富经验。是销售补充试剂的原始制造商。

Complement Technology, Inc. was formed in 2005.  CompTech purchased Advanced Research Technologies, Inc. in 2005 when its owners retired.  Adv. Research Technologies had supplied reagents for complement research since 1993.  Complement Technology has continued to supply top quality reagents to scientists around the world and we have added a number of new reagents to our list. We try to provide the best reagents and the best advice on the use of our complement reagents in your applications.

The president, Michael K. Pangburn, Ph.D., has spent more than 37 years in the complement field. He trained at Scripps Research Institute under Dr. Hans J. Muller-Eberhard (1976-1984). His research at the University of Texas Health Science Center, Tyler, Texas (1984-present) has resulted in more than 100 publications in the complement field.

 

Vice president and Chief Operating Officer, Kerry Pangburn, has spent more than 35 years in the complement field. She trained at Scripps Research Institute under Drs. Alfred Esser, Eckhard Podack and Hans J. Muller-Eberhard (1978-1984). Her research in complement, which included protein purification, continued at the University of Texas Health Science Center, Tyler, Texas (1984-2005).

Vice president for Research and Development, Nenoo Rawal, Ph.D., has spent more than 17 years in the Complement field.  She worked on purification and characterization of proteins of the complement system for 15 years at the University of Texas Health Science Center, Tyler, Texas (1996-2010).

产品列表:

Complement Technology

A098

C1

0.2

Complement Technology

A099

C1q

1

Complement Technology

A100

C1q (40% glycerol)

1

Complement Technology

A102

C1r Enzyme

1

Complement Technology

A103

C1s Proenzyme

1

Complement Technology

A104

C1s Enzyme

1

Complement Technology

A140

C1 Esterase Inhibitor

1

Complement Technology

A112

C2

0.5

Complement Technology

A113

C3

1

Complement Technology

A135

Factor B

1

Complement Technology

A136

Factor D

0.1

Complement Technology

A137

Factor H

1

Complement Technology

A137c

Factor H (concentrated)

10

Complement Technology

A138

Factor I

1

Complement Technology

A139

Factor P (Properdin)

1

Complement Technology

A150

Cobra Venom Factor  (USA ONLY)

1

Complement Technology

A154

Factor Ba

1

Complement Technology

A155

Factor Bb

1

Complement Technology

A113c

C3 (concentrated)

5

Complement Technology

A118

C3a

0.5

Complement Technology

A119

C3a desArg

0.5

Complement Technology

A114

C3b

1

Complement Technology

A115

iC3b

1

Complement Technology

A116

C3c

1

Complement Technology

A117

C3d

1

Complement Technology

A105

C4

1

Complement Technology

A105c

C4 (concentrated)

4

Complement Technology

A106

C4a

0.5

Complement Technology

A107

C4a desArg

0.5

Complement Technology

A108

C4b

1

Complement Technology

A109

C4b Binding Protein

1

Complement Technology

A120

C5

1

Complement Technology

A144

C5a

0.5

calbioreagents d蛋白试剂产品目录

calbioreagents d蛋白试剂产品目录

d蛋白试剂

Id产品系列包括针对Id1,Id2,Id3和Id4的兔单克隆抗体。研究表明,这些兔抗-Id单克隆抗体是可在市场上买到的好的Id抗体,并且是在福尔马林固定的石蜡包埋组织的免疫组织化学中起作用的抗-Id1,Id2,Id3和Id4抗体。
用兔单克隆抗人类/小鼠Id1克隆195-14染色的人乳腺肿瘤。特异性Id1染色可见于内皮细胞核。由斯隆·凯特琳癌症研究所的Robert Benezra博士提供
 
 
Id蛋白家族有四个成员,Id1,Id2,Id3和Id4。初发现这些蛋白质是
参与细胞分化阴性对照的蛋白质。通过与一组称为bHLH(碱性螺旋-环-螺旋)蛋白的转录因子发生物理相互作用,Id蛋白可作为转录的负调控因子。由于这种活性,该组蛋白被命名为Id蛋白(用于抑制DNA结合)。Id蛋白可能在协调基因表达,细胞增殖,肿瘤发生和血管生成中发挥重要作用。

我们有十个不同的克隆可用于人和小鼠的Id1,Id2,Id3和Id4。有关每个克隆的特定数据表,请单击下表中每个目录号的链接。
分析物
产品类别
描述
零件编号
Id1 兔单克隆 抗小鼠Id1克隆37-2
M082
50微克
Id1 兔单克隆 抗小鼠Id1克隆37-2 M083 100微克
Id1 兔单克隆 抗小鼠Id1克隆37-2 M084 1毫克
Id1 兔单克隆 抗人类/小鼠Id1克隆195-14 M085 50微克
Id1 兔单克隆 抗人类/小鼠Id1克隆195-14 M086 100微克
Id1 兔单克隆 抗人类/小鼠Id1克隆195-14 M087 1毫克
Id1 兔单克隆 抗人类Id1克隆5-3 M088 50微克
Id1 兔单克隆 抗人类Id1克隆5-3 M089 100微克
Id1 兔单克隆 抗人类Id1克隆5-3 M090 1毫克
ID2 兔单克隆 抗人类/小鼠Id2克隆9-2-8 M213 50微克
ID2 兔单克隆 抗人类/小鼠Id2克隆9-2-8 M214 100微克
ID2 兔单克隆 抗人类/小鼠Id2克隆9-2-8
M215
1毫克
ID3 兔单克隆 抗人类/小鼠Id3克隆6-1
M094
50微克
ID3 兔单克隆 抗人类/小鼠Id3克隆6-1 M095 100微克
ID3 兔单克隆 抗人类/小鼠Id3克隆6-1 M096 1毫克
ID3 兔单克隆 抗人类/小鼠Id3克隆16-1 M097 50微克
ID3 兔单克隆 抗人类/小鼠Id3克隆16-1
M098
100微克
ID3 兔单克隆 抗人类/小鼠Id3克隆16-1 M099 1毫克
ID3 兔单克隆 抗人类/小鼠Id3克隆17-3 M100 50微克
ID3 兔单克隆 抗人类/小鼠Id3克隆17-3 M101 100微克
ID3 兔单克隆 抗人类/小鼠Id3克隆17-3 M102 1毫克
ID3 兔单克隆 抗人类/小鼠Id3克隆42-1 M103 50微克
ID3 兔单克隆 抗人类/小鼠Id3克隆42-1 M104 100微克
ID3 兔单克隆 抗人类/小鼠Id3克隆42-1 M105 1毫克
ID4 兔单克隆 抗人类/小鼠Id4克隆82-12 M106 50微克
ID4 兔单克隆 抗人类/小鼠Id4克隆82-12 M107 100毫克
ID4 兔单克隆 抗人类/小鼠Id4克隆82-12 M108 1毫克

kainos生化诊断试剂产品

kainos生化诊断试剂产品

 

IMPORTANT BIOCHEMICAL DIAGNOSTIC REAGENTS

 “Aqua-auto Kainos CRE-III plus Test Kit”

血清肌酐水平是高诊断价值的指标,随着肾功能受损(例如由肾衰竭或尿毒症引起的肾功能受损)而升高。

凯诺斯(Kainos)新开发的Aqua-auto凯诺斯CRE-III plus测试试剂盒基于具有优异热稳定性的酶以及添加的稳定剂和染料中的专有技术,是一种易于使用的液体肌酐测量试剂盒,适用于各种品牌的自动分析仪系统。

“Aqua-auto Kainos ALB Test Kit”

通常用于比色测定白蛋白的溴甲酚绿(BCG)方法的缺点是,它也与球蛋白级分反应。

Kainos的新型Aqua-auto Kainos ALB测试试剂盒是一种基于溴甲酚紫(BCP)方法的液态试剂盒,与传统的BCG方法相比,它对白蛋白的特异性更高,解决了BCP对非巯基白蛋白表现出不同反应性的问题(HNA,氧化形式)和巯基白蛋白(HMA,还原形式)。

Aqua-auto Kainos UN-II Test Kit”

尽管Urease-GLDH方法以其高灵敏度和高特异性被广泛地用于测量尿素氮,但由于存在细菌污染可能会产生铵,因此该方法可能会产生错误的结果。

Kainos新开发的Aqua-auto Kainos UN-II测试套件,使用异柠檬酸脱氢酶(ICDH)来显着提高样品中铵的应对能力,是一种液态尿素氮测量试剂盒,具有出色的可操作性和线性度,适用于各种自动分析仪系统。

 

akoyabio​ CODEX分析试剂和抗体

 

 

akoyabio​ CODEX分析试剂和抗体

CODEX分析法通过迭代成像循环靶向抗体组的子集,从而克服了传统的多重免疫荧光技术的挑战,从而在单个组织切片中揭示了40多种生物标志物。

我们提供了完整的解决方案,其中包括针对CODEX系统进行了优化和验证的抗体和试剂。经验证和库存的抗体可用于不同类型的组织:小鼠新鲜冷冻,人新鲜冷冻和人FFPE。用户可以使用Akoya的定制偶联试剂盒灵活地创建由市售的,经Akoya验证的抗体或标有CODEX条形码的克隆组成的面板。

试剂盒和试剂

用于组织染色,自定义缀合和执行CODEX实验的缓冲液和试剂

CODEX抗体

CODEX共轭抗体,用于构建抗体面板

CODEX条码

修饰寡核苷酸,易于偶联定制CODEX抗体

CODEX记者

荧光团偶联的寡核苷酸,用于CODEX抗体的可视化

 

试剂盒和试剂

CODEX分析需要专门配制的试剂和缓冲液,以使用CODEX抗体对组织染色并进行迭代成像循环。对于每个成像周期,将三个带有特定光谱染料的CODEX Reporter应用于染色的组织,以可视化相应的CODEX抗体。该CODEX仪器适用轻柔洗涤步骤去除CODEX记者无任何化学修饰,随后施加下一组记者的想象下一组CODEX抗体。

目录 #

名称

尺寸

7000001 10X CODEX缓冲区 10个反应
7000002 CODEX检测试剂 10个反应
7000003 核染色 10个反应
7000008 CODEX染色套件 10个反应
7000009 CODEX偶联试剂盒 10个反应
7000010 CODEX垫片v2 10个垫片
232107 CODEX存储缓冲区 120毫升
7000005 盖玻片 138
7000006 96孔板 10
7000007 96孔板密封 10
7000013 CODEX盖玻片储物盒 1盒

 

CODEX抗体

CODEX抗体是单独提供的,可以混合使用并与设计面板匹配,以同时分析多达40多种生物标志物。

Akoya提供经过充分测试的CODEX抗体和一系列补充抗体。

 

CODEX ®盘点抗体

CODEX清单抗体由Akoya提供,并已通过完整的CODEX抗体验证过程和制造质量控制。我们库存的抗体也得到了我们现场支持团队的全面支持。

 

人类FFPE组织的CODEX®抗体

CODEX抗体已在多种类型的人类FFPE组织中进行了测试。这些CODEX抗体与不同的CODEX条形码(BX000)结合。每个试剂盒包含一管CODEX抗体和一管相应的染料标记的Reporter(RX000),在标准染色条件下有足够的容量用于25 CODEX运行(或测试)。推荐用于FFPE组织的染料是Atto 550,Cy5和Alexa Fluor™750。

目录 #

名称

尺寸

4450036 b-Catenin1-BX020(12F7)-Atto 550-RX020 25项测试
4450030 CD3e-BX045(EP449E)—Cy5-RX045 25项测试
4350018 CD4-BX003(EPR6855)—Cy5-RX003 25项测试
4250012 CD8-BX026(C8 / 144B)-Atto 550-RX026 25项测试
4350020 CD11c-BX024(118 / A5)—Cy5-RX024 25项测试
4150018 CD20-BX007(L26)— Alexa Fluor™488-RX007 25项测试
4450018 CD20-BX007(L26)— Alexa Fluor™750-RX007 25项测试
4450027 CD21-BX032(EP3093)—阿托550-RX032 25项测试
4150017 CD31-BX001(EP3095)— Alexa Fluor™488-RX001 25项测试
4450017 CD31-BX001(EP3095)— Alexa Fluor™750-RX001 25项测试
4250002 CD44-BX005(IM7)-阿托550-RX005 25项测试
4250023 CD45RO-BX017(UCHL1)-Atto 550-RX017 25项测试
4350019 CD68-BX015(KP1)—Cy5-RX015 25项测试
4350001 CD107a-BX006(H4A3)—Cy5-RX006 25项测试
4250021 E-cadherin-BX014(4A2C7)-Atto 550-RX014 25项测试
4350021 组蛋白H3磷酸酯(Ser28)-BX030(HTA28)-Cy5-RX030 25项测试
4450029 HLA-DR-BX033(EPR3692)—Cy5-RX033 25项测试
4450031 角蛋白14-BX002(聚19053)—阿托550-RX002 25项测试
4250019 Ki67-BX047(B56)-Atto 550-RX047 25项测试
4450032 LIF-BX006(M1506B09)—Cy5-RX006 25项测试
4450034 Mac2 / Galectin-3-BX035(M3 / 38)-Atto 550-RX035 25项测试
4150020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™488-RX019 25项测试
4450020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™750-RX019 25项测试
4250004 Podoplanin-BX023(NC-08)-Atto 550-RX023 25项测试
4450033 TFAM-BX029(18G102B2E11)-Atto 550-RX029 25项测试

 

用于人类新鲜冷冻组织的CODEX®抗体

已经使用扁桃体组织测试了用于人类新鲜冷冻组织的CODEX抗体。这些CODEX抗体与不同的CODEX条形码(BX000)结合。每个试剂盒包含一管CODEX抗体和一管相应的染料标记的Reporter(RX000),在标准染色条件下有足够的容量用于25 CODEX运行(或测试)。推荐用于人类新鲜冷冻组织的染料是Atto 550,Cy5和Alexa Fluor™488。

目录#

名称

尺寸

4250005 CD2-BX002(RPA-2.10)-Atto 550-RX002 25项测试
4350008 CD3-BX015(UCHT1)—Cy5-RX015 25项测试
4350010 CD4-BX021(SK3)—Cy5-RX021 25项测试
4150004 CD8-BX004(SK1)—Alexa Fluor™488-RX004 25项测试
4450004 CD8-BX004(SK1)— Alexa Fluor™750-RX004 25项测试
4350012 CD11c-BX027(S-HCL-3)—Cy5-RX027 25项测试
4350003 CD19-BX003(HIB19)—Cy5-RX003 25项测试
4150009 CD21-BX013(Bu32)-Alexa Fluor™488-RX013 25项测试
4450009 CD21-BX013(Bu32)-Alexa Fluor™750-RX013 25项测试
4250009 CD31-BX032(WM59)—阿托550-RX032 25项测试
4250020 CD34-BX035(561)-阿托550-RX035 25项测试
4150007 CD38-BX007(HB-7)-Alexa Fluor™488-RX007 25项测试
4450007 CD38-BX007(HB-7)-Alexa Fluor™750-RX007 25项测试
4150003 CD45-BX001(HI30)— Alexa Fluor™488-RX001 25项测试
4450003 CD45-BX001(HI30)— Alexa Fluor™750-RX001 25项测试
4250023 CD45RO-BX017(UCHL1)-Atto 550-RX017 25项测试
4350007 CD49f-BX033(GoH3)—Cy5-RX033 25项测试
4250022 CD69-BX041(FN50)-阿托550-RX041 25项测试
4150021 CD90-BX022(5E10)-Alexa Fluor™488-RX022 25项测试
4450021 CD90-BX022(5E10)-Alexa Fluor™750-RX022 25项测试
4250008 CD104-BX005(58XB4)-Atto 550-RX005 25项测试
4150008 CD138-BX010(MI15)-Alexa Fluor™488-RX010 25项测试
4450008 CD138-BX010(MI15)— Alexa Fluor™750-RX010 25项测试
4250013 CD278-BX017(C398.4A)-Atto 550-RX017 25项测试
4250010 CD279-BX014(EH12.2H7)-Atto 550-RX014 25项测试
4250006 HLA-DR-BX026(L243)—阿托550-RX026 25项测试
4250019 Ki67-BX047(B56)-Atto 550-RX047 25项测试
4150020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™488-RX019 25项测试
4450020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™750-RX019 25项测试
4250004 Podoplanin-BX023(NC-08)-Atto 550-RX023 25项测试

下载抗体清单

CODEX®小鼠新鲜冷冻组织抗体

已使用脾脏组织测试了用于小鼠新鲜冷冻组织的CODEX抗体。这些CODEX抗体与不同的CODEX条形码(BX000)结合。每个试剂盒包含一管CODEX抗体和一管相应的染料标记的Reporter(RX000),在标准染色条件下有足够的容量用于25 CODEX运行(或测试)。推荐用于小鼠新鲜冷冻组织的染料是Atto 550,Cy5和Alexa Fluor™488。

目录#

名称

尺寸

4350014 CD3-BX021(17A2)—Cy5-RX021 25项测试
4250016 CD4-BX026(RM4-5)—阿托550-RX026 25项测试
4250007 CD5-BX017(53-7.3)-Atto 550-RX017 25项测试
4250017 CD8a-BX029(53-6.7)-Atto 550-RX029 25项测试
4150015 CD11b-BX025(M1 / 70)—Alexa Fluor™488-RX025 25项测试
4450015 CD11b-BX025(M1 / 70)-Alexa Fluor™750-RX025 25项测试
4350013 CD11c-BX030(N418)—Cy5-RX030 25项测试
4250014 CD19-BX020(6D5)-Atto 550-RX020 25项测试
4250015 CD21 / 35-BX023(7E9)-Atto 550-RX023 25项测试
4150014 CD24-BX022(M1 / 69)—Alexa Fluor™488-RX022 25项测试
4450014 CD24-BX022(M1 / 69)-Alexa Fluor™750-RX022 25项测试
4250001 CD31-BX002(MEC13.3)-Atto 550-RX002 25项测试
4150013 CD38-BX019(90)— Alexa Fluor™488-RX019 25项测试
4450013 CD38-BX019(90)-Alexa Fluor™750-RX019 25项测试
4250002 CD44-BX005(IM7)-阿托550-RX005 25项测试
4150002 CD45-BX007(30-F11)— Alexa Fluor™488-RX007 25项测试
4450002 CD45-BX007(30-F11)— Alexa Fluor™750-RX007 25项测试
4150006 CD45R / B220-BX010(Ra3-6B2)-Alexa Fluor™488-RX010 25项测试
4450006 CD45R / B220-BX010(Ra3-6B2)-Alexa Fluor™750-RX010 25项测试
4350007 CD49f-BX033(GoH3)—Cy5-RX033 25项测试
4350016 CD71-BX027(RI7217)—Cy5-RX027 25项测试
4450001 CD90.2-BX001(30-H12)-Alexa Fluor™750-RX001 25项测试
4150001 CD90.2-BX001(30-H12)-Alexa Fluor™488-RX001 25项测试
4350005 CD169-BX015(3D6.112)—Cy5-RX015 25项测试
4150012 IgD-BX016(11-26c.2a)-Alexa Fluor™488-RX016 25项测试
4450012 IgD-BX016(11-26c.2a)-Alexa Fluor™750-RX016 25项测试
4150011 IgM-BX013(RMM-1)-Alexa Fluor™488-RX013 25项测试
4450011 IgM-BX013(RMM-1)-Alexa Fluor™750-RX013 25项测试
4250019 Ki67-BX047(B56)-Atto 550-RX047 25项测试
4350015 Ly6g-BX024(1A8)—Cy5-RX024 25项测试
4250003 MHC II-BX014(M5 / 114.15.2)-Atto 550-RX014 25项测试
4350006 TCRb-BX003(H57-597)—Cy5-RX003 25项测试
4150005 Ter119-BX004(TER-119)-Alexa Fluor™488-RX004 25项测试
4450005 Ter119-BX004(TER-119)-Alexa Fluor™750-RX004 25项测试

 

CODEX ®屏蔽抗体

Akoya并未列出或提供CODEX筛选的抗体,但包括一系列已纯化并成功与CODEX Barcodes结合并在次级淋巴组织中显示阳性染色信号的克隆。这些克隆可从其他抗体供应商处商购获得,但需要终用户偶联。CODEX条形码和相关的共轭协议可通过Akoya获得。

 

 

CODEX ®社区抗体

CODEX用户群在不断增长,我们鼓励跨客户站点的协作,以共享他们经过CODEX测试的克隆和协议的列表。这些CODEX社区抗体虽然证明与CODEX仪器兼容,但不会通过Akoya出售。终用户需要共轭。CODEX条形码和相关的共轭协议可通过Akoya获得。我们正在继续扩大名单。

氢氧化钠试剂


Medicago 12-9183-5说明书

品牌:瑞典Medicago

Sodium Hydroxide Reagent (NaOH)

氢氧化钠试剂(NaOH)

     

货号

产品名称

包装尺寸

 

价格

12-9183-5

氢氧化钠(NaOH)5M

5个小袋

1000毫升/袋

77欧元

 

特征            

  • 由药用级试剂制备
  • 方便密封的小袋
  • 无忧无虑 – 只需加水即可
  • 消除称重错误                       

 

 

 

产品描述

氢氧化钠广泛用于生物化学。它是一种基本溶液,具有提高化学溶液pH值的能力,例如它可用于中和酸。

Medicago的氢氧化钠试剂纯度为99.99%,在密封袋中以预先称重的粉末形式提供。当溶解在去离子水中时,一个小袋产生1000ml的5M氢氧化钠。

 

应用

  • 生物化学实验室
  • 中和酸

 

使用说明

在放置在磁力搅拌器上的实验室烧瓶或烧杯中倒空一袋NaOH试剂。加入300毫升去离子水并搅拌溶液几分钟。将体积调节至1000毫升,搅拌至*溶解,溶液即可使用。

 

运输和储存

NaOH试剂在室温下运输。将袋子存放在室温下的干燥处。保质期为生产日期后三年。

 

产品规格

化学品:药品级

格式:*预先称重的粉末混合物

浓度:5M NaOH

体积:1000毫升

 

VIAFILL触屏式快速试剂分液器

VIAFILL触屏式快速试剂分液器

品牌 其他品牌

瑞士IBS VIAFILL触屏式快速试剂分液器是一款经济型大容量试剂分液器,具有触摸屏图形用户界面,编程极其简单。用户可以在 8 道和 16 道分液盒间轻松转换,来快速填充 6 到 1536 孔板。附带的堆叠机可帮助完成大量有盖和无盖孔板的填充。
进口
现货

瑞士IBS VIAFILL触屏式快速试剂分液器

易于使用的触屏式快速试剂分液器

  大容量试剂分液器需要高额的投资,或者用户需要购买多个昂贵的模块来构建理想的分液装置。同时,这些分液器只有8通道分液盒,需要2次平移才能完成384孔板的填充。这增加了分液耗时和交叉污染风险。

  VIAFILL是一款经济型大容量试剂分液器,具有触摸屏图形用户界面,编程极其简单。用户可以在 8道和16道分液盒间轻松转换,来快速填充6到1536孔板。附带的堆叠机可帮助完成大量有盖和无盖孔板的填充。

它是如何工作的

VIAFILL试剂分液器具有*的触摸屏图形用户界面,重复分液、变量分液以及自定义编程都极其简单。

用户可以在8道和16道分液盒间轻松转换,来快速填充6到1536孔板。附带的堆叠机可以使用25和50板堆槽,以帮助完成大量有盖和无盖孔板的填充。

快速试剂分液

VIAFILL是拥有彩色触摸屏用户界面的试剂分液器,其直观的仪器导航可有效缩短用户的学习时间

使用者可以通过用户界面快速编辑预先设定的程序,并创建、存储、命名和调用多99个独立的液体处理程序。

孔板堆叠机

附带的孔板堆叠机能够提高效率并进行无人值守操作。堆叠机上专为25块或50块孔板设计的可装卸板槽可以便利地存放孔板。

堆叠机是为标准板或不同高度的深孔板设计的,同时也兼容多种带盖子的孔板。

VIAFILL触屏式快速试剂分液器

技术规格

  1. 量程:0.5µl-9999µl
  2. 尺寸规格 (W×D×H):37.5cm×30.5cm×24.0cm
  3. 操作环境:5°to~35 °C,湿度<80 %
  4. 重量:10.66kg
  5. 兼容规格:6, 12, 24, 48, 96, 384 和 1536孔板(浅底和深底)
  6. 塑料管孔径:小号:0.3 mm,大号:0.5 mm

订货信息:

VIAFILL试剂分液器

描述 货号
主机,含8道塑料分液盒,灭菌,5-9999 µl 5600

分液盒:8道、16道

类型 描述 货号
8道,小孔 塑料分液盒,灭菌,0.5 – 999 µl,5个/箱 5722
8道,标准孔 塑料分液盒,灭菌,0.5 – 9999 µl,5个/箱 5724
16道,小孔 塑料分液盒,灭菌,0.5 – 999 µl,5个/箱 5742

VIAFILL触屏式快速试剂分液器

配件:孔板堆叠机和板槽。

类型 描述 货号
孔板堆叠机 主机 5910
孔板堆叠机板槽 25 板容量(1个) 5915
孔板堆叠机板槽 50 板容量(1个) 5916

VIAFILL触屏式快速试剂分液器 

VIAFILL触屏式快速试剂分液器

VIAFILL触屏式快速试剂分液器

VIAFILL触屏式快速试剂分液器

脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

产品说明书

FAQ

COA

已发表文献

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)