细胞周期检测试剂盒 细胞凋亡检测试剂盒|Cell Cycle and Apoptosis Analysis Kit
产品说明书
FAQ
COA
已发表文献
产品描述
细胞周期与细胞凋亡检测试剂盒(Cell Cycle and Apoptosis Analysis Kit)采用了经典的碘化丙啶染色(Propidium staining,即PI staining)方法对细胞周期与细胞凋亡进行分析。
碘化丙啶 (Propidium,PI) 是一种双链DNA荧光染料,其嵌入双链DNA后可以产生荧光,并且荧光强度和双链DNA的含量成正比。细胞内的DNA被PI染色后,可以用流式细胞仪对细胞进行DNA含量测定,根据DNA含量的分布情况,进行细胞周期和细胞凋亡分析。
PI染色后,假设G0/G1期细胞的荧光强度为1,那么含有双份基因组DNA的G2/M期细胞的荧光强度的理论值为2,正在进行DNA复制的S期细胞的荧光强度为1-2之间。凋亡细胞由于细胞核发生浓缩以及发生DNA片段化 (DNA fragmentation) 导致部分基因组DNA片断在染色过程中丢失,因此凋亡细胞PI染色后呈现明显的弱染,即荧光强度小于1,在流式检测的荧光图上出现所谓的sub-G1峰,即凋亡细胞峰。
细胞凋亡也可以用流式细胞仪观察细胞光散射的变化来检测。 细胞发生凋亡时,由于胞浆和染色质浓缩、核碎裂,产生凋亡小体,使细胞的光散射性质发生变化。凋亡前期,染色质皱缩,细胞密度增加,前向角光散射色显著降低。凋亡后期,细胞产生凋亡小体,前向角光散射和侧向角光散色都显著降低。
本试剂盒通常应用于贴壁或悬浮细胞的细胞周期与细胞凋亡检测。如果用于组织的细胞周期与细胞凋亡检测,则必须把组织消化成单细胞状态,才可以进行检测。
产品组分
编号 |
组分 |
产品编号/规格 |
|
40301ES50(50 T) |
40301ES60(100 T) |
||
40301-A |
RNase A Solution |
0.5 mL |
1 mL |
40301-B |
PI Solution |
0.5 mL |
1 mL |
40301-C |
Staining Solution |
25 mL |
25 mL*2 |
运输与保存方法
运输:冰袋(wet ice)运输。
保存方法:-20℃避光保存,有效期为2年。
【注】如果需要在短时间内多次重复使用,可以于4℃避光保存,2个月内有效。
注意事项
1)本试剂盒需要使用流式细胞仪进行检测。
2)细胞处理需轻柔,尽量避免人为的损伤细胞。
3)为防止不同批次细胞在实验时所处周期不同导致重复性差,可以在实验前进行细胞的同步化处理。实验细胞应处于对数
生长期,贴壁细胞一般在50~80%汇合度时收集为宜。
4)400目筛网过滤是用来将粘在一起的细胞团滤掉,留下单细胞,否则会出现人为的多倍体干扰。如果没有条件过滤,请在染色之前将细胞轻弹以分散,再进行染色。
5)荧光染料均存在淬灭问题,保存和使用过程中请尽量注意避光,以减缓荧光淬灭。
6)操作碘化丙啶时,应注意防护,保护眼睛、避免吸入。
7)为了您的安全和健康,请穿实验服并戴一次性手套操作。
8) 本产品仅作科研用途!
使用方法
1)细胞样品制备:细胞数量控制在1×105~1 × 106个。
a)贴壁细胞:小心吸除细胞培养液,用胰酶消化细胞,制备成单细胞悬液。1000 g离心5 min,沉淀细胞,弃上清,用1 mL预冷的PBS润洗细胞一次,离心收集细胞。
b)悬浮细胞:1000 g离心5 min,沉淀细胞,小心吸除上清。加入1 mL预冷的PBS,重悬细胞,再次离心收集细胞。
c)组织细胞:将组织块用剪刀剪成尽量小的小块后,用0.25%的胰酶消化0.5-1 h,经过200-400目筛网过滤得到单细胞悬液。1000 g离心5 min,沉淀细胞。加入约1 mL预冷的PBS,重悬细胞,再次离心沉淀细胞。如组织难以消化,可加入适量胶原酶。
2)细胞固定:细胞沉淀用1 mL预冷的70%乙醇轻轻混匀,4℃固定2 h以上或者过夜。接下来1000 g,离心5 min沉淀细
胞后,用1 mL预冷的PBS重悬。然后再次1000 g离心5 min沉淀细胞。
3)染色:
在0.5 mL染色缓冲液(40301-C)中加入10 μL 碘化丙啶储液(40301-B)和10 μLRNase A(40301-A)溶液,混匀待用。每个细胞样品加入0.5 mL配置好的碘化丙啶染色液,轻轻混匀重悬细胞。37℃避光孵育30 min,就可以进行流式检测,流式检测最好在5 h内完成。
【注】:配置好的PI染色液在短时间内可以4℃保存,宜当日使用。
4.流式检测和分析:细胞用400目筛网过滤,用流式细胞仪进行检测,在激发波长488 nm波长处检测,同时检测光散射情况。采用适当分析软件进行细胞DNA含量分析和光散射分析。
HB221122
产品描述
细胞周期与细胞凋亡检测试剂盒(Cell Cycle and Apoptosis Analysis Kit)采用了经典的碘化丙啶染色(Propidium staining,即PI staining)方法对细胞周期与细胞凋亡进行分析。
碘化丙啶 (Propidium,PI) 是一种双链DNA荧光染料,其嵌入双链DNA后可以产生荧光,并且荧光强度和双链DNA的含量成正比。细胞内的DNA被PI染色后,可以用流式细胞仪对细胞进行DNA含量测定,根据DNA含量的分布情况,进行细胞周期和细胞凋亡分析。
PI染色后,假设G0/G1期细胞的荧光强度为1,那么含有双份基因组DNA的G2/M期细胞的荧光强度的理论值为2,正在进行DNA复制的S期细胞的荧光强度为1-2之间。凋亡细胞由于细胞核发生浓缩以及发生DNA片段化 (DNA fragmentation) 导致部分基因组DNA片断在染色过程中丢失,因此凋亡细胞PI染色后呈现明显的弱染,即荧光强度小于1,在流式检测的荧光图上出现所谓的sub-G1峰,即凋亡细胞峰。
细胞凋亡也可以用流式细胞仪观察细胞光散射的变化来检测。 细胞发生凋亡时,由于胞浆和染色质浓缩、核碎裂,产生凋亡小体,使细胞的光散射性质发生变化。凋亡前期,染色质皱缩,细胞密度增加,前向角光散射色显著降低。凋亡后期,细胞产生凋亡小体,前向角光散射和侧向角光散色都显著降低。
本试剂盒通常应用于贴壁或悬浮细胞的细胞周期与细胞凋亡检测。如果用于组织的细胞周期与细胞凋亡检测,则必须把组织消化成单细胞状态,才可以进行检测。
产品组分
编号 |
组分 |
产品编号/规格 |
|
40301ES50(50 T) |
40301ES60(100 T) |
||
40301-A |
RNase A Solution |
0.5 mL |
1 mL |
40301-B |
PI Solution |
0.5 mL |
1 mL |
40301-C |
Staining Solution |
25 mL |
25 mL*2 |
运输与保存方法
运输:冰袋(wet ice)运输。
保存方法:-20℃避光保存,有效期为2年。
【注】如果需要在短时间内多次重复使用,可以于4℃避光保存,2个月内有效。
注意事项
1)本试剂盒需要使用流式细胞仪进行检测。
2)细胞处理需轻柔,尽量避免人为的损伤细胞。
3)为防止不同批次细胞在实验时所处周期不同导致重复性差,可以在实验前进行细胞的同步化处理。实验细胞应处于对数
生长期,贴壁细胞一般在50~80%汇合度时收集为宜。
4)400目筛网过滤是用来将粘在一起的细胞团滤掉,留下单细胞,否则会出现人为的多倍体干扰。如果没有条件过滤,请在染色之前将细胞轻弹以分散,再进行染色。
5)荧光染料均存在淬灭问题,保存和使用过程中请尽量注意避光,以减缓荧光淬灭。
6)操作碘化丙啶时,应注意防护,保护眼睛、避免吸入。
7)为了您的安全和健康,请穿实验服并戴一次性手套操作。
8) 本产品仅作科研用途!
使用方法
1)细胞样品制备:细胞数量控制在1×105~1 × 106个。
a)贴壁细胞:小心吸除细胞培养液,用胰酶消化细胞,制备成单细胞悬液。1000 g离心5 min,沉淀细胞,弃上清,用1 mL预冷的PBS润洗细胞一次,离心收集细胞。
b)悬浮细胞:1000 g离心5 min,沉淀细胞,小心吸除上清。加入1 mL预冷的PBS,重悬细胞,再次离心收集细胞。
c)组织细胞:将组织块用剪刀剪成尽量小的小块后,用0.25%的胰酶消化0.5-1 h,经过200-400目筛网过滤得到单细胞悬液。1000 g离心5 min,沉淀细胞。加入约1 mL预冷的PBS,重悬细胞,再次离心沉淀细胞。如组织难以消化,可加入适量胶原酶。
2)细胞固定:细胞沉淀用1 mL预冷的70%乙醇轻轻混匀,4℃固定2 h以上或者过夜。接下来1000 g,离心5 min沉淀细
胞后,用1 mL预冷的PBS重悬。然后再次1000 g离心5 min沉淀细胞。
3)染色:
在0.5 mL染色缓冲液(40301-C)中加入10 μL 碘化丙啶储液(40301-B)和10 μLRNase A(40301-A)溶液,混匀待用。每个细胞样品加入0.5 mL配置好的碘化丙啶染色液,轻轻混匀重悬细胞。37℃避光孵育30 min,就可以进行流式检测,流式检测最好在5 h内完成。
【注】:配置好的PI染色液在短时间内可以4℃保存,宜当日使用。
4.流式检测和分析:细胞用400目筛网过滤,用流式细胞仪进行检测,在激发波长488 nm波长处检测,同时检测光散射情况。采用适当分析软件进行细胞DNA含量分析和光散射分析。
HB221122
Q:这款试剂盒是不是凋亡和周期均可以检测?
A:这款试剂盒是检测细胞周期的,细胞周期检测中细胞内的DNA被PI染色后,可以用流式细胞仪对细胞进行DNA含量测定,根据DNA含量的分布情况,进行细胞周期和细胞凋亡分析。
Q:Staining Solution能否使用PBS或DPBS代替?
A:可以
Q:流式周期结果如何分析?G1,S,G2-M数据分析。G2/G1的数据是有意义吗?
A:一般是G1期数据都基本没有变化,抑制细胞周期的药物处理就是G2/M期增加,S期减少。一般是看各个时期的比值
Q:流式周期固定的时候能否直接加70-75%的乙醇重悬细胞固定?
A:不可以,如果直接用70-75%的乙醇,会导致固定效果差或者出现细胞固定后无沉淀的现象。建议先用PBS重悬细胞后,再加入无水乙醇稀释到70-75%。
Q:做流式周期的时候,只出现单峰是什么原因?是不是你们的试剂有问题?
A:试剂是没有问题的,能出现峰说明试剂是可以和核酸结合的,只出现单峰或没有G2期,可能原因有以下几点:1.细胞状态,是不是细胞状态较差,建议调整细胞状态之后进行实验。2.细胞密度过密,如果细胞接种的时候过密会导致细胞接触抑制。3.原代细胞,有些原代细胞是没有增值能力的。4.圈门没圈好,建议正确圈门
Q:流式分析细胞周期,收集了10的6次方细胞,但细胞在乙醇固定之后,还可以看到细胞沉淀的,但PBS洗涤两次之后,就基本没什么细胞沉淀了,上机发现看不到细胞了。这是怎么回事啊?怎么解决这个问题啊?
A:1. 先用冷PBS悬浮细胞,充分悬浮,使细胞充分分散成单细胞。之后缓慢加入预冷的无水乙醇,终浓度为70-75%乙醇。不直接加75%乙醇的原因是:直接加入乙醇会导致细胞团聚的现象,很难重悬成单细胞。乙醇固定之后没有细胞沉淀。
2.很可能是洗细胞的过程中丢失了,解决办法有:采用尖底的离心管和水平离心机。离心后尽量用吸管吸取上清,不要倾倒;吸上清时残留1mm左右的水膜,不要吸完。离心的转速或时间可稍微增加一点儿。每次加溶液时,吸头最好不要接触液面;混匀时最好不要用吸头吹打,以免吸头挂壁带走部分细胞。
Q:试剂盒的 RNase A和 PI的浓度是多少,Staining Solution成分是什么?
A:RNase A和 PI的浓度都是1mg/ml,Staining Solution成分是一些盐溶液配方,配方不告知,用完了可以暂用PBS替代。
Q:周期的各个时期加起来不足100%是什么原因呢?
A:应该是没调好,因为流式是一个动态的过程,首位有点偏差是正常的,差的大可能是圈了一些黏连的细胞,需要去掉这些细胞,或者选择不同的拟合公式,可以调整圈门看看。
[1] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[2] Zhao J, Lu P, Wan C, et al. Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nat Commun. 2021;12(1):6839. Published 2021 Nov 25. doi:10.1038/s41467-021-27172-0(IF:14.919)
[3] Xia YK, Zeng YR, Zhang ML, et al. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell. 2021;12(7):557-577. doi:10.1007/s13238-020-00754-2(IF:10.164)
[4] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[5] Zhou Z, Fan T, Yan Y, et al. One stone with two birds: Phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials. 2019;194:130-138. doi:10.1016/j.biomaterials.2018.12.024(IF:8.806)
[6] Du P, Wang T, Wang H, Yang M, Yin H. Mucin-fused myeloid-derived growth factor (MYDGF164) exhibits a prolonged serum half-life and alleviates fibrosis in chronic kidney disease. Br J Pharmacol. 2022;179(16):4136-4156. doi:10.1111/bph.15851(IF:8.740)
[7] Wang J, Du X, Wang X, et al. Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett. 2022;526:76-90. doi:10.1016/j.canlet.2021.11.017(IF:8.679)
[8] Chen L, Su Y, Yin B, et al. LARP6 Regulates Keloid Fibroblast Proliferation, Invasion, and Ability to Synthesize Collagen [published online ahead of print, 2022 Feb 15]. J Invest Dermatol. 2022;S0022-202X(22)00116-6. doi:10.1016/j.jid.2022.01.028(IF:8.551)
[9] Chen W, Song J, Liu S, et al. USP9X promotes apoptosis in cholangiocarcinoma by modulation expression of KIF1Bβ via deubiquitinating EGLN3. J Biomed Sci. 2021;28(1):44. Published 2021 Jun 10. doi:10.1186/s12929-021-00738-2(IF:8.410)
[10] Duan Z , Luo Q , Gu L , et al. A co-delivery nanoplatform for a lignan-derived compound and perfluorocarbon tuning IL-25 secretion and the oxygen level in tumor microenvironments for meliorative tumor radiotherapy. Nanoscale. 2021;13(32):13681-13692. doi:10.1039/d1nr03738b(IF:7.790)
[11] Lu T, Lu H, Duan Z, et al. Discovery of High-Affinity Inhibitors of the BPTF Bromodomain. J Med Chem. 2021;64(16):12075-12088. doi:10.1021/acs.jmedchem.1c00721(IF:7.446)
[12] Zhang L, Zhao J, Dong J, Liu Y, Xuan K, Liu W. GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther. 2021;12(1):225. Published 2021 Apr 6. doi:10.1186/s13287-021-02235-7(IF:6.832)
[13] Yu H, Yang X, Xiao X, et al. Human Adipose Mesenchymal Stem Cell-derived Exosomes Protect Mice from DSS-Induced Inflammatory Bowel Disease by Promoting Intestinal-stem-cell and Epithelial Regeneration. Aging Dis. 2021;12(6):1423-1437. Published 2021 Sep 1. doi:10.14336/AD.2021.0601(IF:6.745)
[14] Wang Y, Zhao M, Li W, et al. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol. 2021;9:656153. Published 2021 Apr 1. doi:10.3389/fcell.2021.656153(IF:6.684)
[15] Zhang Y, Chen G, Zhuang X, Guo M. Inhibition of Growth of Colon Tumors and Proliferation of HT-29 Cells by Warburgia ugandensis Extract through Mediating G0/G1 Cell Cycle Arrest, Cell Apoptosis, and Intracellular ROS Generation. Oxid Med Cell Longev. 2021;2021:8807676. Published 2021 Dec 29. doi:10.1155/2021/8807676(IF:6.543)
[16] Pan X, Liu N, Liu Y, et al. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors. Eur J Med Chem. 2022;238:114425. doi:10.1016/j.ejmech.2022.114425(IF:6.514)
[17] Wang CJ, Guo X, Zhai RQ, et al. Discovery of penipanoid C-inspired 2-(3,4,5-trimethoxybenzoyl)quinazolin-4(3H)-one derivatives as potential anticancer agents by inhibiting cell proliferation and inducing apoptosis in hepatocellular carcinoma cells. Eur J Med Chem. 2021;224:113671. doi:10.1016/j.ejmech.2021.113671(IF:6.514)
[18] Qin X, Dang W, Yang X, Wang K, Kebreab E, Lyu L. Neddylation inactivation affects cell cycle and apoptosis in sheep follicular granulosa cells [published online ahead of print, 2022 May 16]. J Cell Physiol. 2022;10.1002/jcp.30777. doi:10.1002/jcp.30777(IF:6.384)
[19] Zhang YL, Chen GL, Liu Y, Zhuang XC, Guo MQ. Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to G0/G1 Cell Cycle Arrest and Antiproliferation in A549 Cells. Antioxidants (Basel). 2021;10(10):1559. Published 2021 Sep 30. doi:10.3390/antiox10101559(IF:6.313)
[20] Xue J, Li S, Shi P, et al. The ETS Inhibitor YK-4-279 Suppresses Thyroid Cancer Progression Independent of TERT Promoter Mutations. Front Oncol. 2021;11:649323. Published 2021 Jun 16. doi:10.3389/fonc.2021.649323(IF:6.244)
[21] Han L, Wu Y, Liu F, Zhang H. eIF4A1 Inhibitor Suppresses Hyperactive mTOR-Associated Tumors by Inducing Necroptosis and G2/M Arrest. Int J Mol Sci. 2022;23(13):6932. Published 2022 Jun 22. doi:10.3390/ijms23136932(IF:5.924)
[22] Xu X, Yuan X, Ni J, et al. MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J Cell Physiol. 2021;236(2):1116-1130. doi:10.1002/jcp.29922(IF:5.546)
[23] Chen X, Lin S, Lin Y, et al. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma. J Transl Med. 2022;20(1):79. Published 2022 Feb 5. doi:10.1186/s12967-022-03260-7(IF:5.531)
[24] Sun W, Sun F, Meng J, et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem. 2022;126:105906. doi:10.1016/j.bioorg.2022.105906(IF:5.275)
[25] Ma Y, Yang X, Han H, et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem. 2021;111:104872. doi:10.1016/j.bioorg.2021.104872(IF:5.275)
[26] Luo Z , Xue K , Zhang X , et al. Thermogelling chitosan-based polymers for the treatment of oral mucosa ulcers. Biomater Sci. 2020;8(5):1364-1379. doi:10.1039/c9bm01754b(IF:5.251)
[27] Sun C, Wei J, Long Z, et al. Spindle pole body component 24 homolog potentiates tumor progression via regulation of SRY-box transcription factor 2 in clear cell renal cell carcinoma. FASEB J. 2022;36(2):e22086. doi:10.1096/fj.202101310R(IF:5.192)
[28] Quan JH, Gao FF, Ismail HAHA, et al. Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation. Int J Nanomedicine. 2020;15:3695-3716. Published 2020 May 26. doi:10.2147/IJN.S244785(IF:5.115)
[29] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[30] Liu J, Tan F, Liu X, Yi R, Zhao X. Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02. Biomolecules. 2019;9(10):575. Published 2019 Oct 6. doi:10.3390/biom9100575(IF:4.694)
[31] Chen X, Tang Y, Yan J, Li L, Jiang L, Chen Y. Circ_0062270 upregulates EPHA2 to facilitate melanoma progression via sponging miR-331-3p. J Dermatol Sci. 2021;103(3):176-182. doi:10.1016/j.jdermsci.2021.08.005(IF:4.563)
[32] Xu A, Wang Q, Lin T. Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells. Int J Mol Sci. 2020;21(8):2952. Published 2020 Apr 22. doi:10.3390/ijms21082952(IF:4.556)
[33] Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer. 2021;21(1):456. Published 2021 Apr 23. doi:10.1186/s12885-021-08202-y(IF:4.430)
[34] Sang L, Wu X, Yan T, et al. The m6A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J Cancer. 2022;13(3):1019-1030. Published 2022 Jan 4. doi:10.7150/jca.60381(IF:4.207)
[35] Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther. 2021;14:3151-3165. Published 2021 May 13. doi:10.2147/OTT.S291823(IF:4.147)
[36] Liu Z, Li Y, Li X, et al. Overexpression of YBX1 Promotes Pancreatic Ductal Adenocarcinoma Growth via the GSK3B/Cyclin D1/Cyclin E1 Pathway. Mol Ther Oncolytics. 2020;17:21-30. Published 2020 Mar 29. doi:10.1016/j.omto.2020.03.006(IF:4.115)
[37] Jiang L, Wang Y, Liu G, et al. C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells. Cancer Cell Int. 2018;18:12. Published 2018 Jan 25. doi:10.1186/s12935-018-0511-5(IF:3.960)
[38] Wang RQ, He FZ, Meng Q, et al. Tribbles pseudokinase 3 (TRIB3) contributes to the progression of hepatocellular carcinoma by activating the mitogen-activated protein kinase pathway. Ann Transl Med. 2021;9(15):1253. doi:10.21037/atm-21-2820(IF:3.932)
[39] Li MT, Pi XX, Cai XL, et al. Ferredoxin reductase regulates proliferation, differentiation, cell cycle and lipogenesis but not apoptosis in SZ95 sebocytes. Exp Cell Res. 2021;405(2):112680. doi:10.1016/j.yexcr.2021.112680(IF:3.905)
[40] Wu H, Chen L, Zhu F, Han X, Sun L, Chen K. The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced Apoptosis of Breast Cancer 4T1 Cells. Toxins (Basel). 2019;11(12):731. Published 2019 Dec 13. doi:10.3390/toxins11120731(IF:3.895)
[41] Wang X, Zhang R, Wu T, et al. Successive treatment with naltrexone induces epithelial-mesenchymal transition and facilitates the malignant biological behaviors of bladder cancer cells. Acta Biochim Biophys Sin (Shanghai). 2021;53(2):238-248. doi:10.1093/abbs/gmaa169(IF:3.848)
[42] Ye F, Zhang W, Ye X, Jin J, Lv Z, Luo C. Identification of Selective, Cell Active Inhibitors of Protein Arginine Methyltransferase 5 through Structure-Based Virtual Screening and Biological Assays. J Chem Inf Model. 2018;58(5):1066-1073. doi:10.1021/acs.jcim.8b00050(IF:3.804)
[43] Shi G, Wang TT, Quan JH, et al. Sox9 facilitates proliferation, differentiation and lipogenesis in primary cultured human sebocytes. J Dermatol Sci. 2017;85(1):44-50. doi:10.1016/j.jdermsci.2016.10.005(IF:3.739)
[44] Liu J, Tan F, Liu X, Yi R, Zhao X. Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC Adv. 2020;10(8):4607-4620. Published 2020 Jan 29. doi:10.1039/c9ra09863a(IF:3.119)
[45] Liu J, Jiang C, Ma X, Feng L, Wang J. Notoginsenoside Fc Accelerates Reendothelialization following Vascular Injury in Diabetic Rats by Promoting Endothelial Cell Autophagy. J Diabetes Res. 2019;2019:9696521. Published 2019 Sep 3. doi:10.1155/2019/9696521(IF:3.040)
[46] Feng Q, Wang D, Guo P, Zhang Z, Feng J. Long non-coding RNA HOTAIR promotes the progression of synovial sarcoma through microRNA-126/stromal cell-derived factor-1 regulation. Oncol Lett. 2021;21(6):444. doi:10.3892/ol.2021.12705(IF:2.967)
[47] Chai B, Guo Y, Zhu N, et al. Pleckstrin 2 is a potential drug target for colorectal carcinoma with activation of APC/β‑catenin. Mol Med Rep. 2021;24(6):862. doi:10.3892/mmr.2021.12502(IF:2.952)
[48] An J, Wang H, Ma X, et al. Musk ketone induces apoptosis of gastric cancer cells via downregulation of sorbin and SH3 domain containing 2. Mol Med Rep. 2021;23(6):450. doi:10.3892/mmr.2021.12089(IF:2.952)
[49] Hassan RN, Luo H, Jiang W. Effects of Nicotinamide on Cervical Cancer-Derived Fibroblasts: Evidence for Therapeutic Potential. Cancer Manag Res. 2020;12:1089-1100. Published 2020 Feb 12. doi:10.2147/CMAR.S229395(IF:2.886)
[50] Li J, Jiang S, Chen Y, et al. Benzene metabolite hydroquinone induces apoptosis of bone marrow mononuclear cells through inhibition of β-catenin signaling. Toxicol In Vitro. 2018;46:361-369. doi:10.1016/j.tiv.2017.08.018(IF:2.866)
[51] Fang G, Wu Y, Zhang X. CircASXL1 knockdown represses the progression of colorectal cancer by downregulating GRIK3 expression by sponging miR-1205. World J Surg Oncol. 2021;19(1):176. Published 2021 Jun 14. doi:10.1186/s12957-021-02275-6(IF:2.754)
[52] Zhang Y, Sun C, Xiao G, Gu Y. Host defense peptide Hymenochirin-1B induces lung cancer cell apoptosis and cell cycle arrest through the mitochondrial pathway. Biochem Biophys Res Commun. 2019;512(2):269-275. doi:10.1016/j.bbrc.2019.03.029(IF:2.705)
[53] Liu XH, Zou J, Li YJ, et al. Isosteroidal alkaloids from Fritillaria hupehensis Hsiao et K.C.Hsia: Synthesis and biological evaluation of alkaloid derivatives as potential cytotoxic agents. Steroids. 2021;176:108929. doi:10.1016/j.steroids.2021.108929(IF:2.668)
[54] Shi G, Liao PY, Cai XL, et al. FoxO1 enhances differentiation and apoptosis in human primary keratinocytes. Exp Dermatol. 2018;27(11):1254-1260. doi:10.1111/exd.13775(IF:2.608)
[55] Zhang MF, Cai XL, Jing KP, et al. Differentiation Model Establishment and Differentiation-Related Protein Screening in Primary Cultured Human Sebocytes. Biomed Res Int. 2018;2018:7174561. Published 2018 Apr 5. doi:10.1155/2018/7174561(IF:2.583)
[56] Cheng YY, Yang X, Gao X, Song SX, Yang MF, Xie FM. LGR6 promotes glioblastoma malignancy and chemoresistance by activating the Akt signaling pathway. Exp Ther Med. 2021;22(6):1364. doi:10.3892/etm.2021.10798(IF:2.447)
[57] Chai M, Jiang M, Gu C, et al. Osteogenically differentiated mesenchymal stem cells promote the apoptosis of human umbilical vein endothelial cells in vitro [published online ahead of print, 2021 Oct 25]. Biotechnol Appl Biochem. 2021;10.1002/bab.2274. doi:10.1002/bab.2274(IF:2.431)
[58] Cheng Y, Yin Z, Jiang F, Xu J, Chen H, Gu Q. Two new lignans from the aerial parts of Saururus chinensis with cytotoxicity toward nasopharyngeal carcinoma. Fitoterapia. 2020;141:104344. doi:10.1016/j.fitote.2019.104344(IF:2.431)
[59] Lin C, Sun L, Huang S, Weng X, Wu Z. STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and Invasion by Inducing Epithelial-Mesenchymal Transition. Biomed Res Int. 2019;2019:8042489. Published 2019 Jul 15. doi:10.1155/2019/8042489(IF:2.197)
[60] Wang B, Zhang XL, Li CX, Liu NN, Hu M, Gong ZC. ANLN promotes carcinogenesis in oral cancer by regulating the PI3K/mTOR signaling pathway. Head Face Med. 2021;17(1):18. Published 2021 Jun 3. doi:10.1186/s13005-021-00269-z(IF:2.151)
[61] Chen X, Xing M. Effects of 5-Aza-2'-deoxycytidine on hormone secretion and epigenetic regulation in sika deer ovarian granulosa cells. Reprod Domest Anim. 2021;56(2):360-369. doi:10.1111/rda.13873(IF:1.641)
[62] Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci. 2021;16(1):1053-1063. Published 2021 Sep 29. doi:10.1515/biol-2021-0082(IF:0.938)