2×实时荧光定量PCR扩增预混液|qPCR SYBR Green Master Mix(High Rox Plus)
产品说明书
FAQ
COA
已发表文献
产品简介
Hieff® qPCR SYBR Green Master Mix(High Rox Plus)是2×实时定量PCR扩增的预混合溶液。Mix中含有热启动Hieff® DNA Polymerase、SYBR Green I、dNTPs、Mg2+及High Rox。使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率。
本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。
产品信息
货号 |
11203ES03 / 11203ES08 / 11203ES50 / 11203ES60 |
规格 |
1 mL / 5×1 mL / 50×1 mL / 100×1 mL |
储存条件
-25~-15℃保存,有效期18个月。本品避免反复冻融。产品中含有荧光染料SYBR Green I,保存或配制反应体系时需避免强光照射。
使用说明
- 推荐反应体系(推荐冰上配制)*****
组分 |
体积(μL)**** |
体积(μL) |
终浓度 |
Hieff® qPCR SYBR Green Master Mix (High Rox Plus)* |
25 |
10 |
1× |
Forward Primer (10 μM)** |
1 |
0.4 |
0.2 μM |
Reverse Primer (10 μM)** |
1 |
0.4 |
0.2 μM |
模板 DNA*** |
X |
X |
– |
无菌超纯水 |
to 50 |
to 20 |
– |
* 使用前务必充分混匀,避免剧烈震荡产生过多气泡。
** 通常引物终浓度为0.2 μM,也可根据情况在0.1-1.0 μM之间进行调整。
*** 如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10。cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。
**** 推荐使用20 μL或 50 μL,以保证目的基因扩增的有效性和重复性。
***** 请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染。
- 反应程序
- 两步法扩增程序*
循环步骤 |
温度 |
时间 |
循环数 |
预变性** |
95℃ |
5 min |
1 |
扩增反应 |
95℃ |
10 sec |
40 |
60℃*** |
30 sec**** |
||
熔解曲线 |
仪器默认设置 |
1 |
- 三步法扩增程序
循环步骤 |
温度 |
时间 |
循环数 |
预变性** |
95℃ |
5 min |
1 |
扩增反应 |
95℃ |
10 sec |
40 |
55-60℃*** |
20 sec |
||
72℃ |
20 sec**** |
||
熔解曲线 |
仪器默认设置 |
1 |
* 高特异性可选择两步法,高效率扩增可选择三步法。
** 预变性时间可根据不同模板和引物的具体情况可适当缩短至2 min。
*** 退火温度和时间请根据引物和目的基因的长度进行调整。
**** 荧光信号采集请按照仪器使用说明书要求进行实验程序设置,几种常见仪器的时间设定如下:
30sec以上:Applied Biosystems: StepOne, StepOne Plus, 7500 Fast;Roche Applied Science: LightCycler 480;Bio-Rad: CFX96
31sec以上:Applied Biosystems: 7300
34sec以上:Applied Biosystems: 7500
- 适用机型
Applied Biosystems: 5700, 7000, 7300, 7700, 7900HT FAST, StepOne, StepOne Plus.
- 结果分析
定量实验至少需要三个生物学重复。反应结束后需要确认扩增曲线及熔解曲线。
1) 扩增曲线:标准扩增曲线为S型。
Ct值落在20-30之间时,定量分析最准确;
Ct值小于10,需要将稀释模板后,重新进行实验;
Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;
Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。
2) 熔解曲线:
熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若熔解曲线出现双峰或者多峰,则不能进行定量分析。
熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。
如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。
如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。
- 引物设计指南
1)推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。
2)正向引物和反向引物的Tm值相差不宜超过2℃。引物Tm值60℃-65℃为佳。
3)引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C。
4)引物内部或者正反两条引物间最好避免出现有3个碱基以上的互补序列。
5)引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补。
6)设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析。
注意事项
1. 本产品仅作科研用途。
2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3. 解冻后Master Mix可能出现絮状物质,4℃放置并上下颠倒混匀至溶液澄清,不影响试剂性能。
4. 推荐使用本公司cDNA合成试剂盒(货号:11141ES),以有效去除RNA样品中残留的基因组。
Ver.CN20231116
产品简介
Hieff® qPCR SYBR Green Master Mix(High Rox Plus)是2×实时定量PCR扩增的预混合溶液。Mix中含有热启动Hieff® DNA Polymerase、SYBR Green I、dNTPs、Mg2+及High Rox。使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率。
本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。
产品信息
货号 |
11203ES03 / 11203ES08 / 11203ES50 / 11203ES60 |
规格 |
1 mL / 5×1 mL / 50×1 mL / 100×1 mL |
储存条件
-25~-15℃保存,有效期18个月。本品避免反复冻融。产品中含有荧光染料SYBR Green I,保存或配制反应体系时需避免强光照射。
使用说明
- 推荐反应体系(推荐冰上配制)*****
组分 |
体积(μL)**** |
体积(μL) |
终浓度 |
Hieff® qPCR SYBR Green Master Mix (High Rox Plus)* |
25 |
10 |
1× |
Forward Primer (10 μM)** |
1 |
0.4 |
0.2 μM |
Reverse Primer (10 μM)** |
1 |
0.4 |
0.2 μM |
模板 DNA*** |
X |
X |
– |
无菌超纯水 |
to 50 |
to 20 |
– |
* 使用前务必充分混匀,避免剧烈震荡产生过多气泡。
** 通常引物终浓度为0.2 μM,也可根据情况在0.1-1.0 μM之间进行调整。
*** 如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10。cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。
**** 推荐使用20 μL或 50 μL,以保证目的基因扩增的有效性和重复性。
***** 请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染。
- 反应程序
- 两步法扩增程序*
循环步骤 |
温度 |
时间 |
循环数 |
预变性** |
95℃ |
5 min |
1 |
扩增反应 |
95℃ |
10 sec |
40 |
60℃*** |
30 sec**** |
||
熔解曲线 |
仪器默认设置 |
1 |
- 三步法扩增程序
循环步骤 |
温度 |
时间 |
循环数 |
预变性** |
95℃ |
5 min |
1 |
扩增反应 |
95℃ |
10 sec |
40 |
55-60℃*** |
20 sec |
||
72℃ |
20 sec**** |
||
熔解曲线 |
仪器默认设置 |
1 |
* 高特异性可选择两步法,高效率扩增可选择三步法。
** 预变性时间可根据不同模板和引物的具体情况可适当缩短至2 min。
*** 退火温度和时间请根据引物和目的基因的长度进行调整。
**** 荧光信号采集请按照仪器使用说明书要求进行实验程序设置,几种常见仪器的时间设定如下:
30sec以上:Applied Biosystems: StepOne, StepOne Plus, 7500 Fast;Roche Applied Science: LightCycler 480;Bio-Rad: CFX96
31sec以上:Applied Biosystems: 7300
34sec以上:Applied Biosystems: 7500
- 适用机型
Applied Biosystems: 5700, 7000, 7300, 7700, 7900HT FAST, StepOne, StepOne Plus.
- 结果分析
定量实验至少需要三个生物学重复。反应结束后需要确认扩增曲线及熔解曲线。
1) 扩增曲线:标准扩增曲线为S型。
Ct值落在20-30之间时,定量分析最准确;
Ct值小于10,需要将稀释模板后,重新进行实验;
Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;
Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。
2) 熔解曲线:
熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若熔解曲线出现双峰或者多峰,则不能进行定量分析。
熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。
如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。
如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。
- 引物设计指南
1)推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。
2)正向引物和反向引物的Tm值相差不宜超过2℃。引物Tm值60℃-65℃为佳。
3)引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C。
4)引物内部或者正反两条引物间最好避免出现有3个碱基以上的互补序列。
5)引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补。
6)设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析。
注意事项
1. 本产品仅作科研用途。
2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3. 解冻后Master Mix可能出现絮状物质,4℃放置并上下颠倒混匀至溶液澄清,不影响试剂性能。
4. 推荐使用本公司cDNA合成试剂盒(货号:11141ES),以有效去除RNA样品中残留的基因组。
Ver.CN20231116
Q:建议qPCR 实验用几步法?
A:常用 2 步法。需提高扩增特异性,可选用 2 步法或提高退火温度。在扩增效率低, ct 值过大的时候,可以改用 3 步法或延长延伸时间。
Q:预变性 5 min 调整成了 10min,对于实验结果有影响吗?
A:有影响,预变性时间较长可能会影响酶的活性,导致 PCR 产物的产量有所降低。
Q:qPCR 实验结果的有效性?为什么建议Ct 值要大于 15?
A:有效性要满足三个条件:(1)标准曲线:扩增效率范围:90–110%,对应斜率为 –3—3.5。 R2>0.98。 (扩增效率=10-1/斜率–1),当斜率=-3.32 时,扩增效率=100%。(2)扩 增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无 Ct 值。(3)熔解曲线:为单一峰。
Ct 值大于 15 个循环是因为 3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。
Q:同一基因复孔间熔解曲线 Tm 值有差异?
A:同样的扩增产物也会出现Tm 值有微小差异,一般差异在 1 度以内都可以接受。
Q:为什么稀释了模板CT 值反而变小了?
A:一般 CT 值与模板起始浓度呈负相关,浓度越高,CT 值越小。但也有很多特殊情况, 比如体系中存在抑制物或是模板不纯,这时候稀释模板反而能使 CT 值变低。
Q:内参CT 值小于 20,目的基因均大于 30,怎么办?
A:可能是目的基因为低丰度表达基因导致。建议:a)换用内参;b)换引物;c)换检测线性范围更广的qPCR mix。
[1] Yu Y, Zhang B, Ji P, et al. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8+/- mouse model of ASD-like behavior. Nat Commun. 2022;13(1):1151. Published 2022 Mar 3. doi:10.1038/s41467-022-28746-2(IF:14.919)
[2] Cao C, Cai Z, Xiao X, et al. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun. 2021;12(1):3917. Published 2021 Jun 24. doi:10.1038/s41467-021-22785-x(IF:14.919)
[3] Wang J, Ge P, Qiang L, et al. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun. 2017;8(1):244. Published 2017 Aug 15. doi:10.1038/s41467-017-00279-z(IF:12.124)
[4] Hao JW, Wang J, Guo H, et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun. 2020;11(1):4765. Published 2020 Sep 21. doi:10.1038/s41467-020-18565-8(IF:12.121)
[5] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[6] Li Y, Hu Q, Li W, et al. Simultaneous blockage of contextual TGF-β by cyto-pharmaceuticals to suppress breast cancer metastasis. J Control Release. 2021;336:40-53. doi:10.1016/j.jconrel.2021.06.012(IF:9.776)
[7] Du J, Wang C, Chen Y, et al. Targeted downregulation of HIF-1α for restraining circulating tumor microemboli mediated metastasis. J Control Release. 2022;343:457-468. doi:10.1016/j.jconrel.2022.01.051(IF:9.776)
[8] Zhang Q, Tong J, Zhou W, et al. Antibacterial and antioxidant chitosan nanoparticles improve the preservation effect for donor kidneys in vitro. Carbohydr Polym. 2022;287:119326. doi:10.1016/j.carbpol.2022.119326(IF:9.381)
[9] Sun Q, Ye Y, Gui A, et al. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett. 2022;537:215678. doi:10.1016/j.canlet.2022.215678(IF:8.679)
[10] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[11] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[12] Wu H, Zhan T, Cui S, et al. Endothelial barrier dysfunction induced by anthracene and its nitrated or oxygenated derivatives at environmentally relevant levels. Sci Total Environ. 2022;802:149793. doi:10.1016/j.scitotenv.2021.149793(IF:7.963)
[13] Jiang K, Zhao D, Ye R, et al. Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy. Nanoscale. 2022;14(5):1834-1846. Published 2022 Feb 3. doi:10.1039/d1nr06353g(IF:7.790)
[14] Xu M, Kong Y, Chen N, et al. Identification of Immune-Related Gene Signature and Prediction of CeRNA Network in Active Ulcerative Colitis. Front Immunol. 2022;13:855645. Published 2022 Mar 22. doi:10.3389/fimmu.2022.855645(IF:7.561)
[15] Tie HM, Sun RX, Yu DW, et al. The apoptosis of grass carp (Ctenopharyngodon idella) muscle during postmortem condition regulated by the cytokines via TOR and NF-κB signaling pathways. Food Chem. 2022;369:130911. doi:10.1016/j.foodchem.2021.130911(IF:7.514)
[16] Wang J, Wei W, Zhang X, et al. Synthesis and Biological Evaluation of C-17-Amino-Substituted Pyrazole-Fused Betulinic Acid Derivatives as Novel Agents for Osteoarthritis Treatment. J Med Chem. 2021;64(18):13676-13692. doi:10.1021/acs.jmedchem.1c01019(IF:7.446)
[17] Tang X, Chen X, Liao Y, et al. Self-Internal-Reference Probe System for Control-Free Quantification of Mutation Abundance. Anal Chem. 2021;93(39):13274-13283. doi:10.1021/acs.analchem.1c02877(IF:6.986)
[18] Li Y, Dong Y, Ran Y, et al. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res Ther. 2021;12(1):358. Published 2021 Jun 21. doi:10.1186/s13287-021-02416-4(IF:6.832)
[19] Wang H, Li Z, Ren H, et al. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Hortic Res. 2022;9:uhac113. Published 2022 May 17. doi:10.1093/hr/uhac113(IF:6.793)
[20] Lou Q, Zhao M, Xu Q, et al. Retinoic Acid Inhibits Tumor-Associated Mesenchymal Stromal Cell Transformation in Melanoma. Front Cell Dev Biol. 2021;9:658757. Published 2021 Apr 6. doi:10.3389/fcell.2021.658757(IF:6.684)
[21] Tian Q, Zhou LQ. Lactate Activates Germline and Cleavage Embryo Genes in Mouse Embryonic Stem Cells. Cells. 2022;11(3):548. Published 2022 Feb 4. doi:10.3390/cells11030548(IF:6.600)
[22] Yang L, Li Z, Chen Y, et al. Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. Oxid Med Cell Longev. 2022;2022:9226022. Published 2022 Mar 10. doi:10.1155/2022/9226022(IF:6.543)
[23] Cheng GP, Guo SM, Yin Y, Li YY, He X, Zhou LQ. Aberrant Expression of Mitochondrial SAM Transporter SLC25A26 Impairs Oocyte Maturation and Early Development in Mice. Oxid Med Cell Longev. 2022;2022:1681623. Published 2022 Apr 13. doi:10.1155/2022/1681623(IF:6.543)
[24] Zhang C, Zhao C, Chen X, et al. Induction of ASC pyroptosis requires gasdermin D or caspase-1/11-dependent mediators and IFNβ from pyroptotic macrophages. Cell Death Dis. 2020;11(6):470. Published 2020 Jun 18. doi:10.1038/s41419-020-2664-0(IF:6.304)
[25] Zhang W, Ma Q, Long B, et al. Runt-Related Transcription Factor 3 Promotes Acute Myeloid Leukemia Progression. Front Oncol. 2021;11:725336. Published 2021 Oct 12. doi:10.3389/fonc.2021.725336(IF:6.244)
[26] Wang R, Zheng Z, Mao S, et al. Construction and Validation of a Novel Eight-Gene Risk Signature to Predict the Progression and Prognosis of Bladder Cancer. Front Oncol. 2021;11:632459. Published 2021 Jun 29. doi:10.3389/fonc.2021.632459(IF:6.244)
[27] Huang M, Ahmed A, Wang W, et al. Negative Elongation Factor (NELF) Inhibits Premature Granulocytic Development in Zebrafish. Int J Mol Sci. 2022;23(7):3833. Published 2022 Mar 30. doi:10.3390/ijms23073833(IF:5.924)
[28] Zhou J, Meng J, Zhang S, et al. The UV-B-Induced Transcription Factor HY5 Regulated Anthocyanin Biosynthesis in Zanthoxylum bungeanum. Int J Mol Sci. 2022;23(5):2651. Published 2022 Feb 28. doi:10.3390/ijms23052651(IF:5.924)
[29] Li J, Peng Z, Liu Y, et al. Overexpression of Peroxisome-Localized GmABCA7 Promotes Seed Germination in Arabidopsis thaliana. Int J Mol Sci. 2022;23(4):2389. Published 2022 Feb 21. doi:10.3390/ijms23042389(IF:5.924)
[30] Wu Z, Cheng H, Liu J, et al. The Oncogenic and Diagnostic Potential of Stanniocalcin 2 in Hepatocellular Carcinoma. J Hepatocell Carcinoma. 2022;9:141-155. Published 2022 Mar 8. doi:10.2147/JHC.S351882(IF:5.828)
[31] Dai Z, Cai L, Chen Y, et al. Brusatol Inhibits Proliferation and Invasion of Glioblastoma by Down-Regulating the Expression of ECM1. Front Pharmacol. 2021;12:775680. Published 2021 Dec 14. doi:10.3389/fphar.2021.775680(IF:5.811)
[32] Chen Y, Chen J, Shu A, et al. Combination of the Herbs Radix Rehmanniae and Cornus Officinalis Mitigated Testicular Damage From Diabetes Mellitus by Enhancing Glycolysis via the AGEs/RAGE/HIF-1α Axis. Front Pharmacol. 2021;12:678300. Published 2021 Jun 28. doi:10.3389/fphar.2021.678300(IF:5.811)
[33] Bao L, Yuan L, Li P, et al. A FUS-LATS1/2 Axis Inhibits Hepatocellular Carcinoma Progression via Activating Hippo Pathway. Cell Physiol Biochem. 2018;50(2):437-451. doi:10.1159/000494155(IF:5.500)
[34] Wang L, Ouyang S, Li B, Wu H, Wang F. GSK-3β manipulates ferroptosis sensitivity by dominating iron homeostasis. Cell Death Discov. 2021;7(1):334. Published 2021 Nov 3. doi:10.1038/s41420-021-00726-3(IF:5.241)
[35] Yan Y, Niu Z, Wang B, et al. Saringosterol from Sargassum fusiforme Modulates Cholesterol Metabolism and Alleviates Atherosclerosis in ApoE-Deficient Mice. Mar Drugs. 2021;19(9):485. Published 2021 Aug 26. doi:10.3390/md19090485(IF:5.118)
[36] Xia H, Liu Z, Liang W, et al. Vagus Nerve Stimulation Alleviates Hepatic Ischemia and Reperfusion Injury by Regulating Glutathione Production and Transformation. Oxid Med Cell Longev. 2020;2020:1079129. Published 2020 Jan 21. doi:10.1155/2020/1079129(IF:5.076)
[37] Zhang Y, Yu R, Tang J, et al. Three cytochrome P450 CYP4 family genes regulated by the CncC signaling pathway mediate phytochemical susceptibility in the red flour beetle, Tribolium castaneum. Pest Manag Sci. 2022;78(8):3508-3518. doi:10.1002/ps.6991(IF:4.845)
[38] Huang Z, Lin F, Zhu X, Zhang C, Jiang M, Lu Z. An exopolysaccharide from Lactobacillus plantarum H31 in pickled cabbage inhibits pancreas α-amylase and regulating metabolic markers in HepG2 cells by AMPK/PI3K/Akt pathway. Int J Biol Macromol. 2020;143:775-784. doi:10.1016/j.ijbiomac.2019.09.137(IF:4.784)
[39] Liu B, Liu Z, Feng C, Tu C. A Necroptosis-Related lncRNA Signature Predicts Prognosis and Indicates the Immune Microenvironment in Soft Tissue Sarcomas. Front Genet. 2022;13:899545. Published 2022 Jun 20. doi:10.3389/fgene.2022.899545(IF:4.772)
[40] Liu J, Tan F, Liu X, Yi R, Zhao X. Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02. Biomolecules. 2019;9(10):575. Published 2019 Oct 6. doi:10.3390/biom9100575(IF:4.694)
[41] Lin Z, Chen L, Wu T, et al. Prognostic Value of SPOCD1 in Esophageal Squamous Cell Carcinoma: A Comprehensive Study Based on Bioinformatics and Validation. Front Genet. 2022;13:872026. Published 2022 May 11. doi:10.3389/fgene.2022.872026(IF:4.599)
[42] Ke L, Li Z, Fan X, et al. Cyclodextrin-Based Hybrid Polymeric Complex to Overcome Dual Drug Resistance Mechanisms for Cancer Therapy. Polymers (Basel). 2021;13(8):1254. Published 2021 Apr 13. doi:10.3390/polym13081254(IF:4.329)
[43] Zhang Y, Li Z, Bian S, et al. HiCoP, a simple and robust method for detecting interactions of regulatory regions. Epigenetics Chromatin. 2020;13(1):27. Published 2020 Jul 1. doi:10.1186/s13072-020-00348-6(IF:4.237)
[44] Liu Y, Bai L, Sun M, et al. Adaptation of cucumber seedlings to low temperature stress by reducing nitrate to ammonium during it's transportation. BMC Plant Biol. 2021;21(1):189. Published 2021 Apr 19. doi:10.1186/s12870-021-02918-6(IF:4.215)
[45] Mao Y, Li Y, Gao H, Lin X. The Direct Interaction between E93 and Kr-h1 Mediated Their Antagonistic Effect on Ovary Development of the Brown Planthopper. Int J Mol Sci. 2019;20(10):2431. Published 2019 May 16. doi:10.3390/ijms20102431(IF:4.183)
[46] Mu J, Tan F, Zhou X, Zhao X. Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice. Food Funct. 2020;11(10):8707-8723. doi:10.1039/d0fo01823f(IF:4.171)
[47] Ge Y, Xu W, Zhang L, Liu M. Ginkgolide B attenuates myocardial infarction-induced depression-like behaviors via repressing IL-1β in central nervous system. Int Immunopharmacol. 2020;85:106652. doi:10.1016/j.intimp.2020.106652(IF:3.943)
[48] Wu Q, He Y, Liu X, et al. Cancer stem cell-like cells-derived exosomal CDKN2B-AS1 stabilizes CDKN2B to promote the growth and metastasis of thyroid cancer via TGF-β1/Smad2/3 signaling [published online ahead of print, 2022 Jun 21]. Exp Cell Res. 2022;113268. doi:10.1016/j.yexcr.2022.113268(IF:3.905)
[49] Xue L, Yang C, Jihong W, et al. Biocontrol potential of Burkholderia sp. BV6 against the rice blast fungus Magnaporthe oryzae [published online ahead of print, 2022 May 2]. J Appl Microbiol. 2022;10.1111/jam.15605. doi:10.1111/jam.15605(IF:3.772)
[50] Liu M, Liu J, Zhang L, Geng Q, Ge Y. Antidepressant-like effects of ginseng fruit saponin in myocardial infarction mice. Biomed Pharmacother. 2019;115:108900. doi:10.1016/j.biopha.2019.108900(IF:3.743)
[51] Hu J, Wu Q, Wang Z, et al. Inhibition of CACNA1H attenuates doxorubicin-induced acute cardiotoxicity by affecting endoplasmic reticulum stress. Biomed Pharmacother. 2019;120:109475. doi:10.1016/j.biopha.2019.109475(IF:3.743)
[52] Wan X, He X, Liu Q, Wang X, Ding X, Li H. Frequent and mild scrotal heat stress in mice epigenetically alters glucose metabolism in the male offspring. Am J Physiol Endocrinol Metab. 2020;319(2):E291-E304. doi:10.1152/ajpendo.00038.2020(IF:3.469)
[53] Sun J, Qian S, Lu J, et al. Knockout of rapC Improves the Bacillomycin D Yield Based on De Novo Genome Sequencing of Bacillus amyloliquefaciens fmbJ. J Agric Food Chem. 2018;66(17):4422-4430. doi:10.1021/acs.jafc.8b00418(IF:3.412)
[54] Li C, Zhou Z, Long X, et al. Inhibitory Effect of Lotus Leaf-Enriched Flavonoid Extract on the Growth of HT-29 Colon Cancer Cells through the Expression of PI3K-Related Molecules. Biomed Res Int. 2022;2022:6770135. Published 2022 May 9. doi:10.1155/2022/6770135(IF:3.411)
[55] Li Y, Wu M, Xu S, Huang H, Yan L, Gu Y. Colorectal cancer stem cell-derived exosomal long intergenic noncoding RNA 01315 (LINC01315) promotes proliferation, migration, and stemness of colorectal cancer cells. Bioengineered. 2022;13(4):10827-10842. doi:10.1080/21655979.2022.2065800(IF:3.269)
[56] Qin Y, Sun Z, Wang W, et al. Characterization of CD3γ/δ+ cells in grass carp (Ctenopharyngodon idella). Dev Comp Immunol. 2021;114:103791. doi:10.1016/j.dci.2020.103791(IF:3.192)
[57] Liu J, Tan F, Liu X, Yi R, Zhao X. Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC Adv. 2020;10(8):4607-4620. Published 2020 Jan 29. doi:10.1039/c9ra09863a(IF:3.119)
[58] Chen M, Shen Y, Lin L, Wei W, Wei D. Mn2+ modulates the production of mycophenolic acid in Penicillium brevicompactum NRRL864 via reactive oxygen species signaling and the investigation of pb-pho. Fungal Biol. 2022;126(6-7):461-470. doi:10.1016/j.funbio.2022.04.006(IF:3.099)
[59] Chen L, Zhang M, Wang X, et al. Cardiac steroid ouabain transcriptionally increases human leukocyte antigen DR expression on monocytes. Steroids. 2021;175:108915. doi:10.1016/j.steroids.2021.108915(IF:2.668)
[60] Liu Y, Shen Q, Zhao X, et al. Cell-free mitochondrial DNA in human follicular fluid: a promising bio-marker of blastocyst developmental potential in women undergoing assisted reproductive technology. Reprod Biol Endocrinol. 2019;17(1):54. Published 2019 Jul 10. doi:10.1186/s12958-019-0495-6(IF:2.589)
[61] Zhou JP, Ren YD, Xu QY, et al. Obesity-Induced Upregulation of ZBTB7A Promotes Lipid Accumulation through SREBP1. Biomed Res Int. 2020;2020:4087928. Published 2020 Jan 7. doi:10.1155/2020/4087928(IF:2.276)
[62] Pang J, Hu P, Wang J, Jiang J, Lai J. Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NF‑κB signaling pathways. Mol Med Rep. 2019;19(6):5291-5300. doi:10.3892/mmr.2019.10211(IF:1.851)
[63] Pan X, Li B, Zhang G, et al. Identification of RORγ as a favorable biomarker for colon cancer. J Int Med Res. 2021;49(5):3000605211008338. doi:10.1177/03000605211008338(IF:1.671)