第五代耐热逆转录酶(无甘油版)|Hifair® V Reverse Transcriptase
产品说明书
FAQ
COA
已发表文献
产品简介
Hifair® V Reverse Transcriptase是在Hieff® M-MLV (H-) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H-) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® V Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。
产品信息
货号 |
11301ES06 / 11301ES12 / 11301ES62/ 11301ES75 /11301ES96 |
规格 |
3 KU / 12 KU / 120 KU / 300 KU / 3000 KU |
单位定义 |
以Poly(A) .Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。 |
组分信息
组分名称 |
11301ES06 |
11301ES12 |
11301ES62 |
11301ES75 |
11301ES96 |
Hifair® V Reverse Transcriptase (600 U/μL) |
5 μL |
20 μL |
200 μL |
500 μL |
5 mL |
储存条件
2~8℃保存,有效期6个月。
使用说明
第一链cDNA合成操作步骤
1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)
组分 |
使用量 |
RNase free ddH2O |
to 13 μL |
Oligo (dT)18 (50 μM) or Random Primers (50 μM) or Gene Specific Primers (2 μM) |
1 μL or 1 μL or 1 μL |
模板RNA |
Total RNA: 1 ng -5 μg或mRNA: 1-500 ng |
65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后,加入下表中的逆转录反应液,并轻轻吹打混匀。
2. 逆转录反应体系配制(20 μL体系)
组分 |
使用量 |
上一步的反应液 |
13 μL |
5×Hifair® V Buffer |
4 μL |
dNTP Mix (10 mM) |
1 μL |
Hifair® V Reverse Transcriptase (600 U/μL) |
200 U |
RNase inhibitor (40 U/µL) |
1 μL |
RNase free ddH2O |
To 20 μL |
3. 逆转录程序设置
温度 |
时间 |
25℃* |
5 min |
42℃** |
15-30 min |
85℃*** |
5 min |
*当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18或Gene Specific Primers,此步可省略。
**逆转录温度:推荐使用42℃。对于高GC含量模板或者复杂二级结构的模板,可将逆转录温度提高至50-55℃。
***85℃加热5 min,目的是使逆转录酶失活。
逆转录产物可立即用于后续PCR或qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。
该逆转录酶也适用于一步法RT-qPCR,推荐每25 μL反应体系,添加10-20 U逆转录酶,也可根据实际情况逐步增加逆转录酶用量。
注意事项
1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。
2. 所有操作均应在冰上进行,防止RNA降解。
3. 为保证高效率逆转录,建议使用高质量的RNA样本。
4. 本产品仅用作科研用途。
5. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
Ver.CN20231116
产品简介
Hifair® V Reverse Transcriptase是在Hieff® M-MLV (H-) Reverse Transcriptase基础上通过基因工程技术得到的全新逆转录酶,与Hieff® M-MLV (H-) Reverse Transcriptase相比,其热稳定性大幅度提高,可耐受高达60℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® V Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。
产品信息
货号 |
11301ES06 / 11301ES12 / 11301ES62/ 11301ES75 /11301ES96 |
规格 |
3 KU / 12 KU / 120 KU / 300 KU / 3000 KU |
单位定义 |
以Poly(A) .Oligo(dT)为模板-引物,在37℃,10 min内,将1 nmol的dTTP掺入为酸不溶性物质所需要的酶量定义为1个活性单位(U)。 |
组分信息
组分名称 |
11301ES06 |
11301ES12 |
11301ES62 |
11301ES75 |
11301ES96 |
Hifair® V Reverse Transcriptase (600 U/μL) |
5 μL |
20 μL |
200 μL |
500 μL |
5 mL |
储存条件
2~8℃保存,有效期6个月。
使用说明
第一链cDNA合成操作步骤
1. RNA变性(此步为可选步骤,RNA变性有助于打开二级结构,可在很大程度上提高第一链cDNA的产量。)
组分 |
使用量 |
RNase free ddH2O |
to 13 μL |
Oligo (dT)18 (50 μM) or Random Primers (50 μM) or Gene Specific Primers (2 μM) |
1 μL or 1 μL or 1 μL |
模板RNA |
Total RNA: 1 ng -5 μg或mRNA: 1-500 ng |
65℃加热5 min,迅速置于冰上冷却2 min。简短离心收集反应液后,加入下表中的逆转录反应液,并轻轻吹打混匀。
2. 逆转录反应体系配制(20 μL体系)
组分 |
使用量 |
上一步的反应液 |
13 μL |
5×Hifair® V Buffer |
4 μL |
dNTP Mix (10 mM) |
1 μL |
Hifair® V Reverse Transcriptase (600 U/μL) |
200 U |
RNase inhibitor (40 U/µL) |
1 μL |
RNase free ddH2O |
To 20 μL |
3. 逆转录程序设置
温度 |
时间 |
25℃* |
5 min |
42℃** |
15-30 min |
85℃*** |
5 min |
*当使用Random Primers时,需25℃,孵育5 min;若使用Oligo (dT)18或Gene Specific Primers,此步可省略。
**逆转录温度:推荐使用42℃。对于高GC含量模板或者复杂二级结构的模板,可将逆转录温度提高至50-55℃。
***85℃加热5 min,目的是使逆转录酶失活。
逆转录产物可立即用于后续PCR或qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。
该逆转录酶也适用于一步法RT-qPCR,推荐每25 μL反应体系,添加10-20 U逆转录酶,也可根据实际情况逐步增加逆转录酶用量。
注意事项
1. 请保持实验区域洁净;操作时需穿戴干净的手套、口罩;实验所用耗材均需保证RNase free,以防止RNase污染。
2. 所有操作均应在冰上进行,防止RNA降解。
3. 为保证高效率逆转录,建议使用高质量的RNA样本。
4. 本产品仅用作科研用途。
5. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
Ver.CN20231116
Q:这款产品有什么特点?
A:M-MLV (H-) Reverse Transcriptase 是通过对野生型 M-MLV 逆转录酶基因改造,在大肠杆菌中表达纯化而成。. 无 RNaseH 活性,具有合成能力高,热稳定性好和半衰期长的特点。
1. Liu C X, Li X, Nan F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J]. Cell, 2019, 177(4): 865-880. e21.(IF31.398)
2. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)
3. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccinatio Immunotherapy of Cancer[J]. Nano Letters, 2020.(IF12.279)
4. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244.(IF 12.353)
5. Tao L, Yi Y, Chen Y, et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages[J]. bioRxiv, 2020.( IF10.717)
6. Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation[J]. Biomaterials, 2020, 237: 119830.(IF10.317)
7. Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription[J]. Theranostics, 2020, 10(19): 8834. (IF8.579) 11120ES
8. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration[J]. Chemical Engineering Journal, 2019, 362: 269-279.(IF8.355)
9. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide PtrCLE20 inhibits vascular cambium activity in Populus[J]. Plant Biotechnology Journal, 2020, 18(1): 195-206.(IF8.154)
10. Chen L, Lam J C W, Tang L, et al. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish[J]. Environmental Science & Technology, 2020.(IF7.864)
11. Zhao P, Zhang J, Wu A, et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity[J]. Journal of Controlled Release, 2020. ( IF7.727)
12. Xu X, Gao J, Dai W, et al. Gene activation by a CRISPR-assisted trans enhancer[J]. eLife, 2019, 8: e45973.(IF7.551)
13. Zhao Y, Wang H P, Yu C, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresource Technology, 2020, 319: 124150.(IF7.539)
14. Li X, Zhang X, Zhao Y, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresource Technology, 2020, 315: 123833.(IF7.539)
15. Nie, W., et al., Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering[J]. Carbon, 2017.116, 325-337.(IF 7.082)
16. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide Ptr CLE 20 inhibits vascular cambium activity in Populus[J]. Plant biotechnology journal, 2019.(IF6.84)
17. Peng L, Wang Y, Yang B, et al. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop[J]. Environmental Pollution, 2020: 115606.(IF6.793)
18. Li A, Liu Q, Li Q, et al. Berberine reduces pyruvate-driven hepatic glucose production by limiting mitochondrial import of pyruvate through mitochondrial pyruvate carrier 1[J]. EBioMedicine, 2018, 34: 243-255. (IF6.68)
19. Lou M D, Li J, Cheng Y, et al. CREB mediates glucagon action to upregulate hepatic MPC1: inhibitory effect of ginsenoside Rb1 on hepatic gluconeogenesis[J]. British journal of pharmacology, 2019.(IF6.583)
20. Fan L, Ye H, Wan Y, et al. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice[J]. Metabolism, 2019, 100: 153955.(IF6.513)
1. Liu C X, Li X, Nan F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J]. Cell, 2019, 177(4): 865-880. e21.(IF31.398)
2. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)
3. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccinatio Immunotherapy of Cancer[J]. Nano Letters, 2020.(IF12.279)
4. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244.(IF 12.353)
5. Tao L, Yi Y, Chen Y, et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages[J]. bioRxiv, 2020.( IF10.717)
6. Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation[J]. Biomaterials, 2020, 237: 119830.(IF10.317)
7. Lin Z, Xia S, Liang Y, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription[J]. Theranostics, 2020, 10(19): 8834. (IF8.579) 11120ES
8. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration[J]. Chemical Engineering Journal, 2019, 362: 269-279.(IF8.355)
9. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide PtrCLE20 inhibits vascular cambium activity in Populus[J]. Plant Biotechnology Journal, 2020, 18(1): 195-206.(IF8.154)
10. Chen L, Lam J C W, Tang L, et al. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish[J]. Environmental Science & Technology, 2020.(IF7.864)
11. Zhao P, Zhang J, Wu A, et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity[J]. Journal of Controlled Release, 2020. ( IF7.727)
12. Xu X, Gao J, Dai W, et al. Gene activation by a CRISPR-assisted trans enhancer[J]. eLife, 2019, 8: e45973.(IF7.551)
13. Zhao Y, Wang H P, Yu C, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresource Technology, 2020, 319: 124150.(IF7.539)
14. Li X, Zhang X, Zhao Y, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresource Technology, 2020, 315: 123833.(IF7.539)
15. Nie, W., et al., Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering[J]. Carbon, 2017.116, 325-337.(IF 7.082)
16. Zhu Y, Song D, Zhang R, et al. A xylem‐produced peptide Ptr CLE 20 inhibits vascular cambium activity in Populus[J]. Plant biotechnology journal, 2019.(IF6.84)
17. Peng L, Wang Y, Yang B, et al. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop[J]. Environmental Pollution, 2020: 115606.(IF6.793)
18. Li A, Liu Q, Li Q, et al. Berberine reduces pyruvate-driven hepatic glucose production by limiting mitochondrial import of pyruvate through mitochondrial pyruvate carrier 1[J]. EBioMedicine, 2018, 34: 243-255. (IF6.68)
19. Lou M D, Li J, Cheng Y, et al. CREB mediates glucagon action to upregulate hepatic MPC1: inhibitory effect of ginsenoside Rb1 on hepatic gluconeogenesis[J]. British journal of pharmacology, 2019.(IF6.583)
20. Fan L, Ye H, Wan Y, et al. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice[J]. Metabolism, 2019, 100: 153955.(IF6.513)