0.5%结晶紫染色液 龙胆紫 革兰氏阴性/阳性区分染料|Crystal Violet Stain Solution(0.5%)|CAS 548-62-9

0.5%结晶紫染色液 龙胆紫 革兰氏阴性/阳性区分染料|Crystal Violet Stain Solution(0.5%)|CAS 548-62-9

产品说明书

FAQ

COA

已发表文献

 

结晶紫(Crystal Violet)是最初在革兰氏染色技术中用于区分革兰氏阴性和革兰氏阳性菌的染料之一,染色原理在于不同的细菌其细胞壁化学结构不同。革兰氏阳性菌,即染色呈阳性菌体内保留有结晶紫-碘复合物,在显微镜下呈紫褐色。在组织培养试验中结晶紫可用于对细菌污染情况的评估。另外,结晶紫还可用于区分不同古生菌以及用于肿瘤细胞系生长抑制或毒性分析。结晶紫还可用作非水溶液酸碱滴定指示剂。

本品为0.5%结晶紫染色液,可将细胞核染成深紫色,适用于细胞或者组织染色用途。

运输和保存方法

常温运输和保存。有效期1年。

使用方法

1)将待染细胞置于冰上,并用预冷PBS于4℃清洗细胞两次,每次3-5min;

2)用预冷的100%甲醇,于-20℃固定细胞10min;

3)吸除甲醇;若想在此步终止染色实验,可将已处理细胞用含50%甘油的PBS覆盖,用封口膜包裹,于4℃冰箱可保存至少1周;

4)染色前将细胞取出回温至室温,加入足量的0.5%结晶紫染液覆盖,孵育10min【可根据染色结果和要求调整时间】;

5)移除上述结晶紫染液,该染液可重复使用;

6)清水清洗已染细胞直至染液被洗脱完毕。或将玻片浸没于盛水的容器内,更换清水至洗净染液;

7)将上述玻片细胞于室温待干(可能需要干燥过夜),染色后细胞可于室温保存较长时间。

注意事项

1)结晶紫有毒,请小心操作。

2)为了您的安全和健康,请穿实验服并戴一次性手套操作。

3)本产品仅作科研用途!

相关产品

产品名称

产品编号

规格

价格(元)

Crystal Violet 结晶紫

60505JP25

25g

252

Crystal Violet Stain Solution (0.5%)

60506JP60

100ml

90

2% Crystal Violet Stain Solution (for Gram   Stain)  2%结晶紫染色液(革兰氏染色用)

60516JP60

100ml

119

HB190124

 

0.5%结晶紫染色液 龙胆紫 革兰氏阴性/阳性区分染料|Crystal Violet Stain Solution(0.5%)|CAS 548-62-9

暂无内容

[1] Zhao Q, Li J, Wu B, et al. Smart Biomimetic Nanocomposites Mediate Mitochondrial Outcome through Aerobic Glycolysis Reprogramming: A Promising Treatment for Lymphoma. ACS Appl Mater Interfaces. 2020;12(20):22687-22701. doi:10.1021/acsami.0c05763(IF:9.229)
[2] Zou Q, Xiao Z, Huang R, et al. Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling. Theranostics. 2019;9(14):4141-4155. Published 2019 May 31. doi:10.7150/thno.35033(IF:8.063)
[3] Li Q, Tan Q, Ma Y, Gu Z, Chen S. Myricetin Suppresses Ovarian Cancer In Vitro by Activating the p38/Sapla Signaling Pathway and Suppressing Intracellular Oxidative Stress. Front Oncol. 2022;12:903394. Published 2022 May 11. doi:10.3389/fonc.2022.903394(IF:6.244)
[4] Huang T, Fan Q, Wang Y, et al. Schwann Cell-Derived CCL2 Promotes the Perineural Invasion of Cervical Cancer. Front Oncol. 2020;10:19. Published 2020 Jan 29. doi:10.3389/fonc.2020.00019(IF:6.244)
[5] Li B, Wei S, Yang L, et al. CISD2 Promotes Resistance to Sorafenib-Induced Ferroptosis by Regulating Autophagy in Hepatocellular Carcinoma. Front Oncol. 2021;11:657723. Published 2021 Aug 16. doi:10.3389/fonc.2021.657723(IF:6.244)
[6] Zhao R, Bei X, Yang B, et al. Endothelial cells promote metastasis of prostate cancer by enhancing autophagy. J Exp Clin Cancer Res. 2018;37(1):221. Published 2018 Sep 10. doi:10.1186/s13046-018-0884-2(IF:6.217)
[7] Li J, Zhi X, Chen S, et al. CDK9 inhibitor CDKI-73 is synergetic lethal with PARP inhibitor olaparib in BRCA1 wide-type ovarian cancer. Am J Cancer Res. 2020;10(4):1140-1155. Published 2020 Apr 1. (IF:5.177)
[8] Cai C, Dang W, Liu S, et al. Anthrax toxin receptor 1/tumor endothelial marker 8 promotes gastric cancer progression through activation of the PI3K/AKT/mTOR signaling pathway. Cancer Sci. 2020;111(4):1132-1145. doi:10.1111/cas.14326(IF:4.966)
[9] Gao Y, Wang Z, Zhu Y, et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci. 2019;110(11):3510-3519. doi:10.1111/cas.14190(IF:4.751)
[10] Zai W, Chen W, Han Y, et al. Targeting PARP and autophagy evoked synergistic lethality in hepatocellular carcinoma. Carcinogenesis. 2020;41(3):345-357. doi:10.1093/carcin/bgz104(IF:4.603)
[11] Cai Y, Lv F, Kaldybayeva N, Zhamilya A, Wu Z, Wu Y. 15, 16-Dihydrotanshinone I Inhibits Hemangiomas through Inducing Pro-apoptotic and Anti-angiogenic Mechanisms in Vitro and in Vivo. Front Pharmacol. 2018;9:25. Published 2018 Jan 30. doi:10.3389/fphar.2018.00025(IF:3.831)
[12] Li Q, Xu D, Gu Z, Li T, Huang P, Ren L. Rutin restrains the growth and metastasis of mouse breast cancer cells by regulating the microRNA-129-1-3p-mediated calcium signaling pathway. J Biochem Mol Toxicol. 2021;35(7):e22794. doi:10.1002/jbt.22794(IF:3.652)
[13] Wang L, Hao J, Zhang Y, et al. Orai1 mediates tumor-promoting store-operated Ca2+ entry in human gastrointestinal stromal tumors via c-KIT and the extracellular signal-regulated kinase pathway. Tumour Biol. 2017;39(2):1010428317691426. doi:10.1177/1010428317691426(IF:3.650)
[14] Dong L, Lin W, Qi P, et al. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1158-1166. doi:10.1158/1055-9965.EPI-16-0006(IF:3.622)
[15] Li C, Xia M, Wang H, Li W, Peng J, Jiang H. Propofol facilitates migration and invasion of oral squamous cell carcinoma cells by upregulating SNAI1 expression. Life Sci. 2020;241:117143. doi:10.1016/j.lfs.2019.117143(IF:3.448)
[16] Zhang TT, Qu N, Sun GH, et al. NRG1 regulates redox homeostasis via NRF2 in papillary thyroid cancer. Int J Oncol. 2018;53(2):685-693. doi:10.3892/ijo.2018.4426(IF:3.333)
[17] Sun X, Zhou J, Zhang Z. Cullin 4A/protein arginine methyltransferase 5 (CUL4A/PRMT5) promotes cell malignant phenotypes and tumor growth in nasopharyngeal carcinoma. Bioengineered. 2022;13(4):8712-8723. doi:10.1080/21655979.2022.2054756(IF:3.269)
[18] Jian W, Deng XC, Munankarmy A, et al. KIF23 promotes triple negative breast cancer through activating epithelial-mesenchymal transition. Gland Surg. 2021;10(6):1941-1950. doi:10.21037/gs-21-19(IF:2.953)
[19] Li J, Zhi X, Shen X, et al. Depletion of UBE2C reduces ovarian cancer malignancy and reverses cisplatin resistance via downregulating CDK1. Biochem Biophys Res Commun. 2020;523(2):434-440. doi:10.1016/j.bbrc.2019.12.058(IF:2.705)
[20] Zhong J, Lin R, Wang G, Lin L, Ruan S, Liu W. KCNIP3 silence promotes proliferation and epithelial-mesenchymal transition of papillary thyroid carcinoma through activating Wnt/β-catenin pathway. Tissue Cell. 2022;75:101739. doi:10.1016/j.tice.2022.101739(IF:2.466)
[21] Wu M, Guo Q, Liu X, Wu L. SPRR3, a novel miR-338-3p target, regulates the malignant progression of clear cell renal cell carcinoma in vitro via the PI3K/Akt signaling pathway. Exp Ther Med. 2022;23(5):317. doi:10.3892/etm.2022.11246(IF:2.447)

 

结晶紫(Crystal Violet)是最初在革兰氏染色技术中用于区分革兰氏阴性和革兰氏阳性菌的染料之一,染色原理在于不同的细菌其细胞壁化学结构不同。革兰氏阳性菌,即染色呈阳性菌体内保留有结晶紫-碘复合物,在显微镜下呈紫褐色。在组织培养试验中结晶紫可用于对细菌污染情况的评估。另外,结晶紫还可用于区分不同古生菌以及用于肿瘤细胞系生长抑制或毒性分析。结晶紫还可用作非水溶液酸碱滴定指示剂。

本品为0.5%结晶紫染色液,可将细胞核染成深紫色,适用于细胞或者组织染色用途。

运输和保存方法

常温运输和保存。有效期1年。

使用方法

1)将待染细胞置于冰上,并用预冷PBS于4℃清洗细胞两次,每次3-5min;

2)用预冷的100%甲醇,于-20℃固定细胞10min;

3)吸除甲醇;若想在此步终止染色实验,可将已处理细胞用含50%甘油的PBS覆盖,用封口膜包裹,于4℃冰箱可保存至少1周;

4)染色前将细胞取出回温至室温,加入足量的0.5%结晶紫染液覆盖,孵育10min【可根据染色结果和要求调整时间】;

5)移除上述结晶紫染液,该染液可重复使用;

6)清水清洗已染细胞直至染液被洗脱完毕。或将玻片浸没于盛水的容器内,更换清水至洗净染液;

7)将上述玻片细胞于室温待干(可能需要干燥过夜),染色后细胞可于室温保存较长时间。

注意事项

1)结晶紫有毒,请小心操作。

2)为了您的安全和健康,请穿实验服并戴一次性手套操作。

3)本产品仅作科研用途!

相关产品

产品名称

产品编号

规格

价格(元)

Crystal Violet 结晶紫

60505JP25

25g

252

Crystal Violet Stain Solution (0.5%)

60506JP60

100ml

90

2% Crystal Violet Stain Solution (for Gram   Stain)  2%结晶紫染色液(革兰氏染色用)

60516JP60

100ml

119

HB190124

 

0.5%结晶紫染色液 龙胆紫 革兰氏阴性/阳性区分染料|Crystal Violet Stain Solution(0.5%)|CAS 548-62-9

暂无内容

[1] Zhao Q, Li J, Wu B, et al. Smart Biomimetic Nanocomposites Mediate Mitochondrial Outcome through Aerobic Glycolysis Reprogramming: A Promising Treatment for Lymphoma. ACS Appl Mater Interfaces. 2020;12(20):22687-22701. doi:10.1021/acsami.0c05763(IF:9.229)
[2] Zou Q, Xiao Z, Huang R, et al. Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling. Theranostics. 2019;9(14):4141-4155. Published 2019 May 31. doi:10.7150/thno.35033(IF:8.063)
[3] Li Q, Tan Q, Ma Y, Gu Z, Chen S. Myricetin Suppresses Ovarian Cancer In Vitro by Activating the p38/Sapla Signaling Pathway and Suppressing Intracellular Oxidative Stress. Front Oncol. 2022;12:903394. Published 2022 May 11. doi:10.3389/fonc.2022.903394(IF:6.244)
[4] Huang T, Fan Q, Wang Y, et al. Schwann Cell-Derived CCL2 Promotes the Perineural Invasion of Cervical Cancer. Front Oncol. 2020;10:19. Published 2020 Jan 29. doi:10.3389/fonc.2020.00019(IF:6.244)
[5] Li B, Wei S, Yang L, et al. CISD2 Promotes Resistance to Sorafenib-Induced Ferroptosis by Regulating Autophagy in Hepatocellular Carcinoma. Front Oncol. 2021;11:657723. Published 2021 Aug 16. doi:10.3389/fonc.2021.657723(IF:6.244)
[6] Zhao R, Bei X, Yang B, et al. Endothelial cells promote metastasis of prostate cancer by enhancing autophagy. J Exp Clin Cancer Res. 2018;37(1):221. Published 2018 Sep 10. doi:10.1186/s13046-018-0884-2(IF:6.217)
[7] Li J, Zhi X, Chen S, et al. CDK9 inhibitor CDKI-73 is synergetic lethal with PARP inhibitor olaparib in BRCA1 wide-type ovarian cancer. Am J Cancer Res. 2020;10(4):1140-1155. Published 2020 Apr 1. (IF:5.177)
[8] Cai C, Dang W, Liu S, et al. Anthrax toxin receptor 1/tumor endothelial marker 8 promotes gastric cancer progression through activation of the PI3K/AKT/mTOR signaling pathway. Cancer Sci. 2020;111(4):1132-1145. doi:10.1111/cas.14326(IF:4.966)
[9] Gao Y, Wang Z, Zhu Y, et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci. 2019;110(11):3510-3519. doi:10.1111/cas.14190(IF:4.751)
[10] Zai W, Chen W, Han Y, et al. Targeting PARP and autophagy evoked synergistic lethality in hepatocellular carcinoma. Carcinogenesis. 2020;41(3):345-357. doi:10.1093/carcin/bgz104(IF:4.603)
[11] Cai Y, Lv F, Kaldybayeva N, Zhamilya A, Wu Z, Wu Y. 15, 16-Dihydrotanshinone I Inhibits Hemangiomas through Inducing Pro-apoptotic and Anti-angiogenic Mechanisms in Vitro and in Vivo. Front Pharmacol. 2018;9:25. Published 2018 Jan 30. doi:10.3389/fphar.2018.00025(IF:3.831)
[12] Li Q, Xu D, Gu Z, Li T, Huang P, Ren L. Rutin restrains the growth and metastasis of mouse breast cancer cells by regulating the microRNA-129-1-3p-mediated calcium signaling pathway. J Biochem Mol Toxicol. 2021;35(7):e22794. doi:10.1002/jbt.22794(IF:3.652)
[13] Wang L, Hao J, Zhang Y, et al. Orai1 mediates tumor-promoting store-operated Ca2+ entry in human gastrointestinal stromal tumors via c-KIT and the extracellular signal-regulated kinase pathway. Tumour Biol. 2017;39(2):1010428317691426. doi:10.1177/1010428317691426(IF:3.650)
[14] Dong L, Lin W, Qi P, et al. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1158-1166. doi:10.1158/1055-9965.EPI-16-0006(IF:3.622)
[15] Li C, Xia M, Wang H, Li W, Peng J, Jiang H. Propofol facilitates migration and invasion of oral squamous cell carcinoma cells by upregulating SNAI1 expression. Life Sci. 2020;241:117143. doi:10.1016/j.lfs.2019.117143(IF:3.448)
[16] Zhang TT, Qu N, Sun GH, et al. NRG1 regulates redox homeostasis via NRF2 in papillary thyroid cancer. Int J Oncol. 2018;53(2):685-693. doi:10.3892/ijo.2018.4426(IF:3.333)
[17] Sun X, Zhou J, Zhang Z. Cullin 4A/protein arginine methyltransferase 5 (CUL4A/PRMT5) promotes cell malignant phenotypes and tumor growth in nasopharyngeal carcinoma. Bioengineered. 2022;13(4):8712-8723. doi:10.1080/21655979.2022.2054756(IF:3.269)
[18] Jian W, Deng XC, Munankarmy A, et al. KIF23 promotes triple negative breast cancer through activating epithelial-mesenchymal transition. Gland Surg. 2021;10(6):1941-1950. doi:10.21037/gs-21-19(IF:2.953)
[19] Li J, Zhi X, Shen X, et al. Depletion of UBE2C reduces ovarian cancer malignancy and reverses cisplatin resistance via downregulating CDK1. Biochem Biophys Res Commun. 2020;523(2):434-440. doi:10.1016/j.bbrc.2019.12.058(IF:2.705)
[20] Zhong J, Lin R, Wang G, Lin L, Ruan S, Liu W. KCNIP3 silence promotes proliferation and epithelial-mesenchymal transition of papillary thyroid carcinoma through activating Wnt/β-catenin pathway. Tissue Cell. 2022;75:101739. doi:10.1016/j.tice.2022.101739(IF:2.466)
[21] Wu M, Guo Q, Liu X, Wu L. SPRR3, a novel miR-338-3p target, regulates the malignant progression of clear cell renal cell carcinoma in vitro via the PI3K/Akt signaling pathway. Exp Ther Med. 2022;23(5):317. doi:10.3892/etm.2022.11246(IF:2.447)